6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include "NPTi.hpp" |
44 |
|
#include "brains/Thermo.hpp" |
45 |
|
#include "integrators/NPT.hpp" |
46 |
|
#include "primitives/Molecule.hpp" |
47 |
< |
#include "utils/OOPSEConstant.hpp" |
47 |
> |
#include "utils/PhysicalConstants.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
|
50 |
< |
namespace oopse { |
50 |
> |
namespace OpenMD { |
51 |
|
|
52 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
53 |
|
// modification of the Hoover algorithm: |
65 |
|
|
66 |
|
void NPTi::evolveEtaA() { |
67 |
|
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
68 |
< |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
68 |
> |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
69 |
|
oldEta = eta; |
70 |
|
} |
71 |
|
|
73 |
|
|
74 |
|
prevEta = eta; |
75 |
|
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
76 |
< |
(OOPSEConstant::pressureConvert*NkBT*tb2)); |
76 |
> |
(PhysicalConstants::pressureConvert*NkBT*tb2)); |
77 |
|
} |
78 |
|
|
79 |
|
void NPTi::calcVelScale() { |
92 |
|
void NPTi::getPosScale(const Vector3d& pos, const Vector3d& COM, |
93 |
|
int index, Vector3d& sc){ |
94 |
|
/**@todo*/ |
95 |
< |
sc = (oldPos[index] + pos)/2.0 -COM; |
95 |
> |
sc = (oldPos[index] + pos)/(RealType)2.0 -COM; |
96 |
|
sc *= eta; |
97 |
|
} |
98 |
|
|
99 |
|
void NPTi::scaleSimBox(){ |
100 |
|
|
101 |
< |
double scaleFactor; |
101 |
> |
RealType scaleFactor; |
102 |
|
|
103 |
|
scaleFactor = exp(dt*eta); |
104 |
|
|
123 |
|
return ( fabs(prevEta - eta) <= etaTolerance ); |
124 |
|
} |
125 |
|
|
126 |
< |
double NPTi::calcConservedQuantity(){ |
126 |
> |
RealType NPTi::calcConservedQuantity(){ |
127 |
|
|
128 |
|
chi= currentSnapshot_->getChi(); |
129 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
131 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
132 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
133 |
|
// orientational degrees of freedom: |
134 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
134 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
135 |
|
|
136 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
137 |
|
// than the barostat (when there are particles with orientational degrees |
138 |
|
// of freedom). |
139 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
139 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
140 |
|
|
141 |
< |
double conservedQuantity; |
142 |
< |
double Energy; |
143 |
< |
double thermostat_kinetic; |
144 |
< |
double thermostat_potential; |
145 |
< |
double barostat_kinetic; |
146 |
< |
double barostat_potential; |
141 |
> |
RealType conservedQuantity; |
142 |
> |
RealType Energy; |
143 |
> |
RealType thermostat_kinetic; |
144 |
> |
RealType thermostat_potential; |
145 |
> |
RealType barostat_kinetic; |
146 |
> |
RealType barostat_potential; |
147 |
|
|
148 |
|
Energy =thermo.getTotalE(); |
149 |
|
|
150 |
< |
thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * OOPSEConstant::energyConvert); |
150 |
> |
thermostat_kinetic = fkBT* tt2 * chi * chi / (2.0 * PhysicalConstants::energyConvert); |
151 |
|
|
152 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
152 |
> |
thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; |
153 |
|
|
154 |
|
|
155 |
< |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * OOPSEConstant::energyConvert); |
155 |
> |
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta /(2.0 * PhysicalConstants::energyConvert); |
156 |
|
|
157 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) / |
158 |
< |
OOPSEConstant::energyConvert; |
157 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) / |
158 |
> |
PhysicalConstants::energyConvert; |
159 |
|
|
160 |
|
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
161 |
|
barostat_kinetic + barostat_potential; |
166 |
|
void NPTi::loadEta() { |
167 |
|
Mat3x3d etaMat = currentSnapshot_->getEta(); |
168 |
|
eta = etaMat(0,0); |
169 |
< |
//if (fabs(etaMat(1,1) - eta) >= oopse::epsilon || fabs(etaMat(1,1) - eta) >= oopse::epsilon || !etaMat.isDiagonal()) { |
169 |
> |
//if (fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || fabs(etaMat(1,1) - eta) >= OpenMD::epsilon || !etaMat.isDiagonal()) { |
170 |
|
// sprintf( painCave.errMsg, |
171 |
|
// "NPTi error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
172 |
|
// painCave.isFatal = 1; |