1 |
gezelter |
2 |
#include <math.h> |
2 |
|
|
#include "Atom.hpp" |
3 |
|
|
#include "SRI.hpp" |
4 |
|
|
#include "AbstractClasses.hpp" |
5 |
|
|
#include "SimInfo.hpp" |
6 |
|
|
#include "ForceFields.hpp" |
7 |
|
|
#include "Thermo.hpp" |
8 |
|
|
#include "ReadWrite.hpp" |
9 |
|
|
#include "Integrator.hpp" |
10 |
|
|
#include "simError.h" |
11 |
|
|
|
12 |
|
|
#ifdef IS_MPI |
13 |
|
|
#include "mpiSimulation.hpp" |
14 |
|
|
#endif |
15 |
|
|
|
16 |
|
|
// Basic isotropic thermostating and barostating via the Melchionna |
17 |
|
|
// modification of the Hoover algorithm: |
18 |
|
|
// |
19 |
|
|
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
20 |
|
|
// Molec. Phys., 78, 533. |
21 |
|
|
// |
22 |
|
|
// and |
23 |
|
|
// |
24 |
|
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
25 |
|
|
|
26 |
|
|
template<typename T> NPTi<T>::NPTi ( SimInfo *theInfo, ForceFields* the_ff): |
27 |
|
|
T( theInfo, the_ff ) |
28 |
|
|
{ |
29 |
|
|
GenericData* data; |
30 |
|
|
DoubleArrayData * etaValue; |
31 |
|
|
vector<double> etaArray; |
32 |
|
|
|
33 |
|
|
eta = 0.0; |
34 |
|
|
oldEta = 0.0; |
35 |
|
|
|
36 |
|
|
if( theInfo->useInitXSstate ){ |
37 |
|
|
// retrieve eta from simInfo if |
38 |
|
|
data = info->getProperty(ETAVALUE_ID); |
39 |
|
|
if(data){ |
40 |
|
|
etaValue = dynamic_cast<DoubleArrayData*>(data); |
41 |
|
|
|
42 |
|
|
if(etaValue){ |
43 |
|
|
etaArray = etaValue->getData(); |
44 |
|
|
eta = etaArray[0]; |
45 |
|
|
oldEta = eta; |
46 |
|
|
} |
47 |
|
|
} |
48 |
|
|
} |
49 |
|
|
} |
50 |
|
|
|
51 |
|
|
template<typename T> NPTi<T>::~NPTi() { |
52 |
|
|
//nothing for now |
53 |
|
|
} |
54 |
|
|
|
55 |
|
|
template<typename T> void NPTi<T>::resetIntegrator() { |
56 |
|
|
eta = 0.0; |
57 |
|
|
T::resetIntegrator(); |
58 |
|
|
} |
59 |
|
|
|
60 |
|
|
template<typename T> void NPTi<T>::evolveEtaA() { |
61 |
|
|
eta += dt2 * ( instaVol * (instaPress - targetPressure) / |
62 |
|
|
(p_convert*NkBT*tb2)); |
63 |
|
|
oldEta = eta; |
64 |
|
|
} |
65 |
|
|
|
66 |
|
|
template<typename T> void NPTi<T>::evolveEtaB() { |
67 |
|
|
|
68 |
|
|
prevEta = eta; |
69 |
|
|
eta = oldEta + dt2 * ( instaVol * (instaPress - targetPressure) / |
70 |
|
|
(p_convert*NkBT*tb2)); |
71 |
|
|
} |
72 |
|
|
|
73 |
|
|
template<typename T> void NPTi<T>::calcVelScale(void) { |
74 |
|
|
vScale = chi + eta; |
75 |
|
|
} |
76 |
|
|
|
77 |
|
|
template<typename T> void NPTi<T>::getVelScaleA(double sc[3], double vel[3]) { |
78 |
|
|
int i; |
79 |
|
|
|
80 |
|
|
for(i=0; i<3; i++) sc[i] = vel[i] * vScale; |
81 |
|
|
} |
82 |
|
|
|
83 |
|
|
template<typename T> void NPTi<T>::getVelScaleB(double sc[3], int index ){ |
84 |
|
|
int i; |
85 |
|
|
|
86 |
|
|
for(i=0; i<3; i++) sc[i] = oldVel[index*3 + i] * vScale; |
87 |
|
|
} |
88 |
|
|
|
89 |
|
|
|
90 |
|
|
template<typename T> void NPTi<T>::getPosScale(double pos[3], double COM[3], |
91 |
|
|
int index, double sc[3]){ |
92 |
|
|
int j; |
93 |
|
|
|
94 |
|
|
for(j=0; j<3; j++) |
95 |
|
|
sc[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
96 |
|
|
|
97 |
|
|
for(j=0; j<3; j++) |
98 |
|
|
sc[j] *= eta; |
99 |
|
|
} |
100 |
|
|
|
101 |
|
|
template<typename T> void NPTi<T>::scaleSimBox( void ){ |
102 |
|
|
|
103 |
|
|
double scaleFactor; |
104 |
|
|
|
105 |
|
|
scaleFactor = exp(dt*eta); |
106 |
|
|
|
107 |
|
|
if ((scaleFactor > 1.1) || (scaleFactor < 0.9)) { |
108 |
|
|
sprintf( painCave.errMsg, |
109 |
|
|
"NPTi error: Attempting a Box scaling of more than 10 percent" |
110 |
|
|
" check your tauBarostat, as it is probably too small!\n" |
111 |
|
|
" eta = %lf, scaleFactor = %lf\n", eta, scaleFactor |
112 |
|
|
); |
113 |
|
|
painCave.isFatal = 1; |
114 |
|
|
simError(); |
115 |
|
|
} else { |
116 |
|
|
info->scaleBox(scaleFactor); |
117 |
|
|
} |
118 |
|
|
|
119 |
|
|
} |
120 |
|
|
|
121 |
|
|
template<typename T> bool NPTi<T>::etaConverged() { |
122 |
|
|
|
123 |
|
|
return ( fabs(prevEta - eta) <= etaTolerance ); |
124 |
|
|
} |
125 |
|
|
|
126 |
|
|
template<typename T> double NPTi<T>::getConservedQuantity(void){ |
127 |
|
|
|
128 |
|
|
double conservedQuantity; |
129 |
|
|
double Energy; |
130 |
|
|
double thermostat_kinetic; |
131 |
|
|
double thermostat_potential; |
132 |
|
|
double barostat_kinetic; |
133 |
|
|
double barostat_potential; |
134 |
|
|
|
135 |
|
|
Energy = tStats->getTotalE(); |
136 |
|
|
|
137 |
|
|
thermostat_kinetic = fkBT* tt2 * chi * chi / |
138 |
|
|
(2.0 * eConvert); |
139 |
|
|
|
140 |
|
|
thermostat_potential = fkBT* integralOfChidt / eConvert; |
141 |
|
|
|
142 |
|
|
|
143 |
|
|
barostat_kinetic = 3.0 * NkBT * tb2 * eta * eta / |
144 |
|
|
(2.0 * eConvert); |
145 |
|
|
|
146 |
|
|
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
147 |
|
|
eConvert; |
148 |
|
|
|
149 |
|
|
conservedQuantity = Energy + thermostat_kinetic + thermostat_potential + |
150 |
|
|
barostat_kinetic + barostat_potential; |
151 |
|
|
|
152 |
|
|
// cout.width(8); |
153 |
|
|
// cout.precision(8); |
154 |
|
|
|
155 |
|
|
// cerr << info->getTime() << "\t" << Energy << "\t" << thermostat_kinetic << |
156 |
|
|
// "\t" << thermostat_potential << "\t" << barostat_kinetic << |
157 |
|
|
// "\t" << barostat_potential << "\t" << conservedQuantity << endl; |
158 |
|
|
return conservedQuantity; |
159 |
|
|
} |
160 |
|
|
|
161 |
|
|
template<typename T> string NPTi<T>::getAdditionalParameters(void){ |
162 |
|
|
string parameters; |
163 |
|
|
const int BUFFERSIZE = 2000; // size of the read buffer |
164 |
|
|
char buffer[BUFFERSIZE]; |
165 |
|
|
|
166 |
|
|
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
167 |
|
|
parameters += buffer; |
168 |
|
|
|
169 |
|
|
sprintf(buffer,"\t%G\t0\t0;", eta); |
170 |
|
|
parameters += buffer; |
171 |
|
|
|
172 |
|
|
sprintf(buffer,"\t0\t%G\t0;", eta); |
173 |
|
|
parameters += buffer; |
174 |
|
|
|
175 |
|
|
sprintf(buffer,"\t0\t0\t%G;", eta); |
176 |
|
|
parameters += buffer; |
177 |
|
|
|
178 |
|
|
return parameters; |
179 |
|
|
|
180 |
|
|
} |