--- trunk/src/integrators/NPTf.cpp 2005/04/15 22:04:00 507 +++ trunk/src/integrators/NPTf.cpp 2012/08/22 02:28:28 1782 @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,6 +28,16 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). + * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). + * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). */ #include "brains/SimInfo.hpp" @@ -44,10 +45,10 @@ #include "integrators/IntegratorCreator.hpp" #include "integrators/NPTf.hpp" #include "primitives/Molecule.hpp" -#include "utils/OOPSEConstant.hpp" +#include "utils/PhysicalConstants.hpp" #include "utils/simError.h" -namespace oopse { +namespace OpenMD { // Basic non-isotropic thermostating and barostating via the Melchionna // modification of the Hoover algorithm: @@ -66,7 +67,7 @@ namespace oopse { for(i = 0; i < 3; i ++){ for(j = 0; j < 3; j++){ if( i == j) { - eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); + eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); } else { eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); } @@ -96,7 +97,7 @@ namespace oopse { for(j = 0; j < 3; j++){ if( i == j) { eta(i, j) = oldEta(i, j) + dt2 * instaVol * - (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); + (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); } else { eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); } @@ -113,7 +114,7 @@ namespace oopse { vScale(i, j) = eta(i, j); if (i == j) { - vScale(i, j) += chi; + vScale(i, j) += thermostat.first; } } } @@ -130,7 +131,7 @@ namespace oopse { void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { /**@todo */ - Vector3d rj = (oldPos[index] + pos)/2.0 -COM; + Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; sc = eta * rj; } @@ -140,8 +141,8 @@ namespace oopse { int j; int k; Mat3x3d scaleMat; - double eta2ij; - double bigScale, smallScale, offDiagMax; + RealType eta2ij; + RealType bigScale, smallScale, offDiagMax; Mat3x3d hm; Mat3x3d hmnew; @@ -221,16 +222,16 @@ namespace oopse { simError(); } else { - Mat3x3d hmat = currentSnapshot_->getHmat(); + Mat3x3d hmat = snap->getHmat(); hmat = hmat *scaleMat; - currentSnapshot_->setHmat(hmat); + snap->setHmat(hmat); } } bool NPTf::etaConverged() { int i; - double diffEta, sumEta; + RealType diffEta, sumEta; sumEta = 0; for(i = 0; i < 3; i++) { @@ -242,42 +243,42 @@ namespace oopse { return ( diffEta <= etaTolerance ); } - double NPTf::calcConservedQuantity(){ - - chi= currentSnapshot_->getChi(); - integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); + RealType NPTf::calcConservedQuantity(){ + + thermostat = snap->getThermostat(); loadEta(); // We need NkBT a lot, so just set it here: This is the RAW number // of integrableObjects, so no subtraction or addition of constraints or // orientational degrees of freedom: - NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; + NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; // fkBT is used because the thermostat operates on more degrees of freedom // than the barostat (when there are particles with orientational degrees // of freedom). - fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; + fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; - double conservedQuantity; - double totalEnergy; - double thermostat_kinetic; - double thermostat_potential; - double barostat_kinetic; - double barostat_potential; - double trEta; + RealType conservedQuantity; + RealType totalEnergy; + RealType thermostat_kinetic; + RealType thermostat_potential; + RealType barostat_kinetic; + RealType barostat_potential; + RealType trEta; - totalEnergy = thermo.getTotalE(); + totalEnergy = thermo.getTotalEnergy(); + + thermostat_kinetic = fkBT * tt2 * thermostat.first * + thermostat.first /(2.0 * PhysicalConstants::energyConvert); - thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); + thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; - thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; - - SquareMatrix tmp = eta.transpose() * eta; + SquareMatrix tmp = eta.transpose() * eta; trEta = tmp.trace(); - barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); + barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); - barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; + barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + barostat_kinetic + barostat_potential; @@ -287,7 +288,7 @@ namespace oopse { } void NPTf::loadEta() { - eta= currentSnapshot_->getEta(); + eta= snap->getBarostat(); //if (!eta.isDiagonal()) { // sprintf( painCave.errMsg, @@ -298,7 +299,7 @@ namespace oopse { } void NPTf::saveEta() { - currentSnapshot_->setEta(eta); + snap->setBarostat(eta); } }