--- trunk/src/integrators/NPTf.cpp 2006/05/17 21:51:42 963 +++ trunk/src/integrators/NPTf.cpp 2010/05/10 17:28:26 1442 @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,6 +28,15 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). + * [4] Vardeman & Gezelter, in progress (2009). */ #include "brains/SimInfo.hpp" @@ -44,10 +44,10 @@ #include "integrators/IntegratorCreator.hpp" #include "integrators/NPTf.hpp" #include "primitives/Molecule.hpp" -#include "utils/OOPSEConstant.hpp" +#include "utils/PhysicalConstants.hpp" #include "utils/simError.h" -namespace oopse { +namespace OpenMD { // Basic non-isotropic thermostating and barostating via the Melchionna // modification of the Hoover algorithm: @@ -66,7 +66,7 @@ namespace oopse { for(i = 0; i < 3; i ++){ for(j = 0; j < 3; j++){ if( i == j) { - eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); + eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); } else { eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); } @@ -96,7 +96,7 @@ namespace oopse { for(j = 0; j < 3; j++){ if( i == j) { eta(i, j) = oldEta(i, j) + dt2 * instaVol * - (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); + (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); } else { eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); } @@ -251,12 +251,12 @@ namespace oopse { // We need NkBT a lot, so just set it here: This is the RAW number // of integrableObjects, so no subtraction or addition of constraints or // orientational degrees of freedom: - NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; + NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; // fkBT is used because the thermostat operates on more degrees of freedom // than the barostat (when there are particles with orientational degrees // of freedom). - fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; + fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; RealType conservedQuantity; RealType totalEnergy; @@ -268,16 +268,16 @@ namespace oopse { totalEnergy = thermo.getTotalE(); - thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); + thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert); - thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; + thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert; SquareMatrix tmp = eta.transpose() * eta; trEta = tmp.trace(); - barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); + barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); - barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; + barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + barostat_kinetic + barostat_potential;