1 |
< |
#include <math.h> |
2 |
< |
|
3 |
< |
#include "math/MatVec3.h" |
4 |
< |
#include "primitives/Atom.hpp" |
5 |
< |
#include "primitives/SRI.hpp" |
6 |
< |
#include "primitives/AbstractClasses.hpp" |
1 |
> |
/* |
2 |
> |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
> |
* |
4 |
> |
* The University of Notre Dame grants you ("Licensee") a |
5 |
> |
* non-exclusive, royalty free, license to use, modify and |
6 |
> |
* redistribute this software in source and binary code form, provided |
7 |
> |
* that the following conditions are met: |
8 |
> |
* |
9 |
> |
* 1. Acknowledgement of the program authors must be made in any |
10 |
> |
* publication of scientific results based in part on use of the |
11 |
> |
* program. An acceptable form of acknowledgement is citation of |
12 |
> |
* the article in which the program was described (Matthew |
13 |
> |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
> |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
> |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
> |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
> |
* |
18 |
> |
* 2. Redistributions of source code must retain the above copyright |
19 |
> |
* notice, this list of conditions and the following disclaimer. |
20 |
> |
* |
21 |
> |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
> |
* notice, this list of conditions and the following disclaimer in the |
23 |
> |
* documentation and/or other materials provided with the |
24 |
> |
* distribution. |
25 |
> |
* |
26 |
> |
* This software is provided "AS IS," without a warranty of any |
27 |
> |
* kind. All express or implied conditions, representations and |
28 |
> |
* warranties, including any implied warranty of merchantability, |
29 |
> |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
> |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
> |
* be liable for any damages suffered by licensee as a result of |
32 |
> |
* using, modifying or distributing the software or its |
33 |
> |
* derivatives. In no event will the University of Notre Dame or its |
34 |
> |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
> |
* direct, indirect, special, consequential, incidental or punitive |
36 |
> |
* damages, however caused and regardless of the theory of liability, |
37 |
> |
* arising out of the use of or inability to use software, even if the |
38 |
> |
* University of Notre Dame has been advised of the possibility of |
39 |
> |
* such damages. |
40 |
> |
*/ |
41 |
> |
|
42 |
|
#include "brains/SimInfo.hpp" |
8 |
– |
#include "UseTheForce/ForceFields.hpp" |
43 |
|
#include "brains/Thermo.hpp" |
44 |
< |
#include "io/ReadWrite.hpp" |
45 |
< |
#include "integrators/Integrator.hpp" |
44 |
> |
#include "integrators/IntegratorCreator.hpp" |
45 |
> |
#include "integrators/NPTf.hpp" |
46 |
> |
#include "primitives/Molecule.hpp" |
47 |
> |
#include "utils/OOPSEConstant.hpp" |
48 |
|
#include "utils/simError.h" |
49 |
|
|
50 |
< |
#ifdef IS_MPI |
15 |
< |
#include "brains/mpiSimulation.hpp" |
16 |
< |
#endif |
50 |
> |
namespace oopse { |
51 |
|
|
52 |
< |
// Basic non-isotropic thermostating and barostating via the Melchionna |
53 |
< |
// modification of the Hoover algorithm: |
54 |
< |
// |
55 |
< |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
56 |
< |
// Molec. Phys., 78, 533. |
57 |
< |
// |
58 |
< |
// and |
59 |
< |
// |
60 |
< |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
52 |
> |
// Basic non-isotropic thermostating and barostating via the Melchionna |
53 |
> |
// modification of the Hoover algorithm: |
54 |
> |
// |
55 |
> |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
56 |
> |
// Molec. Phys., 78, 533. |
57 |
> |
// |
58 |
> |
// and |
59 |
> |
// |
60 |
> |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
61 |
|
|
62 |
< |
template<typename T> NPTf<T>::NPTf ( SimInfo *theInfo, ForceFields* the_ff): |
29 |
< |
T( theInfo, the_ff ) |
30 |
< |
{ |
31 |
< |
GenericData* data; |
32 |
< |
DoubleArrayData * etaValue; |
33 |
< |
vector<double> etaArray; |
34 |
< |
int i,j; |
62 |
> |
void NPTf::evolveEtaA() { |
63 |
|
|
64 |
< |
for(i = 0; i < 3; i++){ |
37 |
< |
for (j = 0; j < 3; j++){ |
64 |
> |
int i, j; |
65 |
|
|
66 |
< |
eta[i][j] = 0.0; |
67 |
< |
oldEta[i][j] = 0.0; |
68 |
< |
} |
69 |
< |
} |
70 |
< |
|
71 |
< |
|
45 |
< |
if( theInfo->useInitXSstate ){ |
46 |
< |
// retrieve eta array from simInfo if it exists |
47 |
< |
data = info->getProperty(ETAVALUE_ID); |
48 |
< |
if(data){ |
49 |
< |
etaValue = dynamic_cast<DoubleArrayData*>(data); |
50 |
< |
|
51 |
< |
if(etaValue){ |
52 |
< |
etaArray = etaValue->getData(); |
53 |
< |
|
54 |
< |
for(i = 0; i < 3; i++){ |
55 |
< |
for (j = 0; j < 3; j++){ |
56 |
< |
eta[i][j] = etaArray[3*i+j]; |
57 |
< |
oldEta[i][j] = eta[i][j]; |
58 |
< |
} |
66 |
> |
for(i = 0; i < 3; i ++){ |
67 |
> |
for(j = 0; j < 3; j++){ |
68 |
> |
if( i == j) { |
69 |
> |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
70 |
> |
} else { |
71 |
> |
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
72 |
|
} |
73 |
|
} |
74 |
|
} |
75 |
+ |
|
76 |
+ |
for(i = 0; i < 3; i++) { |
77 |
+ |
for (j = 0; j < 3; j++) { |
78 |
+ |
oldEta(i, j) = eta(i, j); |
79 |
+ |
} |
80 |
+ |
} |
81 |
+ |
|
82 |
|
} |
83 |
|
|
84 |
< |
} |
84 |
> |
void NPTf::evolveEtaB() { |
85 |
|
|
86 |
< |
template<typename T> NPTf<T>::~NPTf() { |
86 |
> |
int i; |
87 |
> |
int j; |
88 |
|
|
89 |
< |
// empty for now |
90 |
< |
} |
89 |
> |
for(i = 0; i < 3; i++) { |
90 |
> |
for (j = 0; j < 3; j++) { |
91 |
> |
prevEta(i, j) = eta(i, j); |
92 |
> |
} |
93 |
> |
} |
94 |
|
|
95 |
< |
template<typename T> void NPTf<T>::resetIntegrator() { |
96 |
< |
|
97 |
< |
int i, j; |
98 |
< |
|
99 |
< |
for(i = 0; i < 3; i++) |
100 |
< |
for (j = 0; j < 3; j++) |
101 |
< |
eta[i][j] = 0.0; |
102 |
< |
|
103 |
< |
T::resetIntegrator(); |
80 |
< |
} |
81 |
< |
|
82 |
< |
template<typename T> void NPTf<T>::evolveEtaA() { |
83 |
< |
|
84 |
< |
int i, j; |
85 |
< |
|
86 |
< |
for(i = 0; i < 3; i ++){ |
87 |
< |
for(j = 0; j < 3; j++){ |
88 |
< |
if( i == j) |
89 |
< |
eta[i][j] += dt2 * instaVol * |
90 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
91 |
< |
else |
92 |
< |
eta[i][j] += dt2 * instaVol * press[i][j] / (NkBT*tb2); |
95 |
> |
for(i = 0; i < 3; i ++){ |
96 |
> |
for(j = 0; j < 3; j++){ |
97 |
> |
if( i == j) { |
98 |
> |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
99 |
> |
(press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
100 |
> |
} else { |
101 |
> |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
102 |
> |
} |
103 |
> |
} |
104 |
|
} |
105 |
< |
} |
105 |
> |
|
106 |
|
|
107 |
< |
for(i = 0; i < 3; i++) |
97 |
< |
for (j = 0; j < 3; j++) |
98 |
< |
oldEta[i][j] = eta[i][j]; |
99 |
< |
} |
107 |
> |
} |
108 |
|
|
109 |
< |
template<typename T> void NPTf<T>::evolveEtaB() { |
109 |
> |
void NPTf::calcVelScale(){ |
110 |
|
|
111 |
< |
int i,j; |
111 |
> |
for (int i = 0; i < 3; i++ ) { |
112 |
> |
for (int j = 0; j < 3; j++ ) { |
113 |
> |
vScale(i, j) = eta(i, j); |
114 |
|
|
115 |
< |
for(i = 0; i < 3; i++) |
116 |
< |
for (j = 0; j < 3; j++) |
117 |
< |
prevEta[i][j] = eta[i][j]; |
108 |
< |
|
109 |
< |
for(i = 0; i < 3; i ++){ |
110 |
< |
for(j = 0; j < 3; j++){ |
111 |
< |
if( i == j) { |
112 |
< |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * |
113 |
< |
(press[i][j] - targetPressure/p_convert) / (NkBT*tb2); |
114 |
< |
} else { |
115 |
< |
eta[i][j] = oldEta[i][j] + dt2 * instaVol * press[i][j] / (NkBT*tb2); |
115 |
> |
if (i == j) { |
116 |
> |
vScale(i, j) += chi; |
117 |
> |
} |
118 |
|
} |
119 |
|
} |
120 |
|
} |
119 |
– |
} |
121 |
|
|
122 |
< |
template<typename T> void NPTf<T>::calcVelScale(void){ |
123 |
< |
int i,j; |
122 |
> |
void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
123 |
> |
sc = vScale * vel; |
124 |
> |
} |
125 |
|
|
126 |
< |
for (i = 0; i < 3; i++ ) { |
127 |
< |
for (j = 0; j < 3; j++ ) { |
126 |
< |
vScale[i][j] = eta[i][j]; |
127 |
< |
|
128 |
< |
if (i == j) { |
129 |
< |
vScale[i][j] += chi; |
130 |
< |
} |
131 |
< |
} |
126 |
> |
void NPTf::getVelScaleB(Vector3d& sc, int index ) { |
127 |
> |
sc = vScale * oldVel[index]; |
128 |
|
} |
133 |
– |
} |
129 |
|
|
130 |
< |
template<typename T> void NPTf<T>::getVelScaleA(double sc[3], double vel[3]) { |
136 |
< |
|
137 |
< |
matVecMul3( vScale, vel, sc ); |
138 |
< |
} |
130 |
> |
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
131 |
|
|
132 |
< |
template<typename T> void NPTf<T>::getVelScaleB(double sc[3], int index ){ |
133 |
< |
int j; |
134 |
< |
double myVel[3]; |
132 |
> |
/**@todo */ |
133 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
134 |
> |
sc = eta * rj; |
135 |
> |
} |
136 |
|
|
137 |
< |
for (j = 0; j < 3; j++) |
145 |
< |
myVel[j] = oldVel[3*index + j]; |
146 |
< |
|
147 |
< |
matVecMul3( vScale, myVel, sc ); |
148 |
< |
} |
137 |
> |
void NPTf::scaleSimBox(){ |
138 |
|
|
139 |
< |
template<typename T> void NPTf<T>::getPosScale(double pos[3], double COM[3], |
140 |
< |
int index, double sc[3]){ |
141 |
< |
int j; |
142 |
< |
double rj[3]; |
139 |
> |
int i; |
140 |
> |
int j; |
141 |
> |
int k; |
142 |
> |
Mat3x3d scaleMat; |
143 |
> |
RealType eta2ij; |
144 |
> |
RealType bigScale, smallScale, offDiagMax; |
145 |
> |
Mat3x3d hm; |
146 |
> |
Mat3x3d hmnew; |
147 |
|
|
155 |
– |
for(j=0; j<3; j++) |
156 |
– |
rj[j] = ( oldPos[index*3+j] + pos[j]) / 2.0 - COM[j]; |
148 |
|
|
158 |
– |
matVecMul3( eta, rj, sc ); |
159 |
– |
} |
149 |
|
|
150 |
< |
template<typename T> void NPTf<T>::scaleSimBox( void ){ |
150 |
> |
// Scale the box after all the positions have been moved: |
151 |
|
|
152 |
< |
int i,j,k; |
153 |
< |
double scaleMat[3][3]; |
165 |
< |
double eta2ij; |
166 |
< |
double bigScale, smallScale, offDiagMax; |
167 |
< |
double hm[3][3], hmnew[3][3]; |
152 |
> |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
153 |
> |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
154 |
|
|
155 |
+ |
bigScale = 1.0; |
156 |
+ |
smallScale = 1.0; |
157 |
+ |
offDiagMax = 0.0; |
158 |
|
|
159 |
+ |
for(i=0; i<3; i++){ |
160 |
+ |
for(j=0; j<3; j++){ |
161 |
|
|
162 |
< |
// Scale the box after all the positions have been moved: |
162 |
> |
// Calculate the matrix Product of the eta array (we only need |
163 |
> |
// the ij element right now): |
164 |
|
|
165 |
< |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
166 |
< |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
165 |
> |
eta2ij = 0.0; |
166 |
> |
for(k=0; k<3; k++){ |
167 |
> |
eta2ij += eta(i, k) * eta(k, j); |
168 |
> |
} |
169 |
|
|
170 |
< |
bigScale = 1.0; |
171 |
< |
smallScale = 1.0; |
172 |
< |
offDiagMax = 0.0; |
170 |
> |
scaleMat(i, j) = 0.0; |
171 |
> |
// identity matrix (see above): |
172 |
> |
if (i == j) scaleMat(i, j) = 1.0; |
173 |
> |
// Taylor expansion for the exponential truncated at second order: |
174 |
> |
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
175 |
> |
|
176 |
|
|
177 |
< |
for(i=0; i<3; i++){ |
178 |
< |
for(j=0; j<3; j++){ |
179 |
< |
|
183 |
< |
// Calculate the matrix Product of the eta array (we only need |
184 |
< |
// the ij element right now): |
185 |
< |
|
186 |
< |
eta2ij = 0.0; |
187 |
< |
for(k=0; k<3; k++){ |
188 |
< |
eta2ij += eta[i][k] * eta[k][j]; |
177 |
> |
if (i != j) |
178 |
> |
if (fabs(scaleMat(i, j)) > offDiagMax) |
179 |
> |
offDiagMax = fabs(scaleMat(i, j)); |
180 |
|
} |
181 |
|
|
182 |
< |
scaleMat[i][j] = 0.0; |
183 |
< |
// identity matrix (see above): |
193 |
< |
if (i == j) scaleMat[i][j] = 1.0; |
194 |
< |
// Taylor expansion for the exponential truncated at second order: |
195 |
< |
scaleMat[i][j] += dt*eta[i][j] + 0.5*dt*dt*eta2ij; |
196 |
< |
|
197 |
< |
|
198 |
< |
if (i != j) |
199 |
< |
if (fabs(scaleMat[i][j]) > offDiagMax) |
200 |
< |
offDiagMax = fabs(scaleMat[i][j]); |
182 |
> |
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
183 |
> |
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
184 |
|
} |
185 |
|
|
186 |
< |
if (scaleMat[i][i] > bigScale) bigScale = scaleMat[i][i]; |
187 |
< |
if (scaleMat[i][i] < smallScale) smallScale = scaleMat[i][i]; |
188 |
< |
} |
186 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
187 |
> |
sprintf( painCave.errMsg, |
188 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
189 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
190 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
191 |
> |
" [%lf\t%lf\t%lf]\n" |
192 |
> |
" [%lf\t%lf\t%lf]\n" |
193 |
> |
" eta = [%lf\t%lf\t%lf]\n" |
194 |
> |
" [%lf\t%lf\t%lf]\n" |
195 |
> |
" [%lf\t%lf\t%lf]\n", |
196 |
> |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
197 |
> |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
198 |
> |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
199 |
> |
eta(0, 0),eta(0, 1),eta(0, 2), |
200 |
> |
eta(1, 0),eta(1, 1),eta(1, 2), |
201 |
> |
eta(2, 0),eta(2, 1),eta(2, 2)); |
202 |
> |
painCave.isFatal = 1; |
203 |
> |
simError(); |
204 |
> |
} else if (offDiagMax > 0.01) { |
205 |
> |
sprintf( painCave.errMsg, |
206 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
207 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
208 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
209 |
> |
" [%lf\t%lf\t%lf]\n" |
210 |
> |
" [%lf\t%lf\t%lf]\n" |
211 |
> |
" eta = [%lf\t%lf\t%lf]\n" |
212 |
> |
" [%lf\t%lf\t%lf]\n" |
213 |
> |
" [%lf\t%lf\t%lf]\n", |
214 |
> |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
215 |
> |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
216 |
> |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
217 |
> |
eta(0, 0),eta(0, 1),eta(0, 2), |
218 |
> |
eta(1, 0),eta(1, 1),eta(1, 2), |
219 |
> |
eta(2, 0),eta(2, 1),eta(2, 2)); |
220 |
> |
painCave.isFatal = 1; |
221 |
> |
simError(); |
222 |
> |
} else { |
223 |
|
|
224 |
< |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
225 |
< |
sprintf( painCave.errMsg, |
226 |
< |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
227 |
< |
" Check your tauBarostat, as it is probably too small!\n\n" |
228 |
< |
" scaleMat = [%lf\t%lf\t%lf]\n" |
212 |
< |
" [%lf\t%lf\t%lf]\n" |
213 |
< |
" [%lf\t%lf\t%lf]\n" |
214 |
< |
" eta = [%lf\t%lf\t%lf]\n" |
215 |
< |
" [%lf\t%lf\t%lf]\n" |
216 |
< |
" [%lf\t%lf\t%lf]\n", |
217 |
< |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
218 |
< |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
219 |
< |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], |
220 |
< |
eta[0][0],eta[0][1],eta[0][2], |
221 |
< |
eta[1][0],eta[1][1],eta[1][2], |
222 |
< |
eta[2][0],eta[2][1],eta[2][2]); |
223 |
< |
painCave.isFatal = 1; |
224 |
< |
simError(); |
225 |
< |
} else if (offDiagMax > 0.01) { |
226 |
< |
sprintf( painCave.errMsg, |
227 |
< |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
228 |
< |
" Check your tauBarostat, as it is probably too small!\n\n" |
229 |
< |
" scaleMat = [%lf\t%lf\t%lf]\n" |
230 |
< |
" [%lf\t%lf\t%lf]\n" |
231 |
< |
" [%lf\t%lf\t%lf]\n" |
232 |
< |
" eta = [%lf\t%lf\t%lf]\n" |
233 |
< |
" [%lf\t%lf\t%lf]\n" |
234 |
< |
" [%lf\t%lf\t%lf]\n", |
235 |
< |
scaleMat[0][0],scaleMat[0][1],scaleMat[0][2], |
236 |
< |
scaleMat[1][0],scaleMat[1][1],scaleMat[1][2], |
237 |
< |
scaleMat[2][0],scaleMat[2][1],scaleMat[2][2], |
238 |
< |
eta[0][0],eta[0][1],eta[0][2], |
239 |
< |
eta[1][0],eta[1][1],eta[1][2], |
240 |
< |
eta[2][0],eta[2][1],eta[2][2]); |
241 |
< |
painCave.isFatal = 1; |
242 |
< |
simError(); |
243 |
< |
} else { |
244 |
< |
info->getBoxM(hm); |
245 |
< |
matMul3(hm, scaleMat, hmnew); |
246 |
< |
info->setBoxM(hmnew); |
224 |
> |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
225 |
> |
hmat = hmat *scaleMat; |
226 |
> |
currentSnapshot_->setHmat(hmat); |
227 |
> |
|
228 |
> |
} |
229 |
|
} |
248 |
– |
} |
230 |
|
|
231 |
< |
template<typename T> bool NPTf<T>::etaConverged() { |
232 |
< |
int i; |
233 |
< |
double diffEta, sumEta; |
231 |
> |
bool NPTf::etaConverged() { |
232 |
> |
int i; |
233 |
> |
RealType diffEta, sumEta; |
234 |
|
|
235 |
< |
sumEta = 0; |
236 |
< |
for(i = 0; i < 3; i++) |
237 |
< |
sumEta += pow(prevEta[i][i] - eta[i][i], 2); |
235 |
> |
sumEta = 0; |
236 |
> |
for(i = 0; i < 3; i++) { |
237 |
> |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
238 |
> |
} |
239 |
> |
|
240 |
> |
diffEta = sqrt( sumEta / 3.0 ); |
241 |
|
|
242 |
< |
diffEta = sqrt( sumEta / 3.0 ); |
242 |
> |
return ( diffEta <= etaTolerance ); |
243 |
> |
} |
244 |
|
|
245 |
< |
return ( diffEta <= etaTolerance ); |
261 |
< |
} |
245 |
> |
RealType NPTf::calcConservedQuantity(){ |
246 |
|
|
247 |
< |
template<typename T> double NPTf<T>::getConservedQuantity(void){ |
247 |
> |
chi= currentSnapshot_->getChi(); |
248 |
> |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
249 |
> |
loadEta(); |
250 |
> |
|
251 |
> |
// We need NkBT a lot, so just set it here: This is the RAW number |
252 |
> |
// of integrableObjects, so no subtraction or addition of constraints or |
253 |
> |
// orientational degrees of freedom: |
254 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
255 |
|
|
256 |
< |
double conservedQuantity; |
257 |
< |
double totalEnergy; |
258 |
< |
double thermostat_kinetic; |
259 |
< |
double thermostat_potential; |
260 |
< |
double barostat_kinetic; |
261 |
< |
double barostat_potential; |
262 |
< |
double trEta; |
263 |
< |
double a[3][3], b[3][3]; |
256 |
> |
// fkBT is used because the thermostat operates on more degrees of freedom |
257 |
> |
// than the barostat (when there are particles with orientational degrees |
258 |
> |
// of freedom). |
259 |
> |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
260 |
> |
|
261 |
> |
RealType conservedQuantity; |
262 |
> |
RealType totalEnergy; |
263 |
> |
RealType thermostat_kinetic; |
264 |
> |
RealType thermostat_potential; |
265 |
> |
RealType barostat_kinetic; |
266 |
> |
RealType barostat_potential; |
267 |
> |
RealType trEta; |
268 |
|
|
269 |
< |
totalEnergy = tStats->getTotalE(); |
269 |
> |
totalEnergy = thermo.getTotalE(); |
270 |
|
|
271 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi / |
277 |
< |
(2.0 * eConvert); |
271 |
> |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
272 |
|
|
273 |
< |
thermostat_potential = fkBT* integralOfChidt / eConvert; |
273 |
> |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
274 |
|
|
275 |
< |
transposeMat3(eta, a); |
276 |
< |
matMul3(a, eta, b); |
277 |
< |
trEta = matTrace3(b); |
275 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
276 |
> |
trEta = tmp.trace(); |
277 |
> |
|
278 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
279 |
|
|
280 |
< |
barostat_kinetic = NkBT * tb2 * trEta / |
286 |
< |
(2.0 * eConvert); |
280 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
281 |
|
|
282 |
< |
barostat_potential = (targetPressure * tStats->getVolume() / p_convert) / |
283 |
< |
eConvert; |
282 |
> |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
283 |
> |
barostat_kinetic + barostat_potential; |
284 |
|
|
285 |
< |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
292 |
< |
barostat_kinetic + barostat_potential; |
285 |
> |
return conservedQuantity; |
286 |
|
|
287 |
< |
return conservedQuantity; |
287 |
> |
} |
288 |
|
|
289 |
< |
} |
289 |
> |
void NPTf::loadEta() { |
290 |
> |
eta= currentSnapshot_->getEta(); |
291 |
|
|
292 |
< |
template<typename T> string NPTf<T>::getAdditionalParameters(void){ |
293 |
< |
string parameters; |
294 |
< |
const int BUFFERSIZE = 2000; // size of the read buffer |
295 |
< |
char buffer[BUFFERSIZE]; |
292 |
> |
//if (!eta.isDiagonal()) { |
293 |
> |
// sprintf( painCave.errMsg, |
294 |
> |
// "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
295 |
> |
// painCave.isFatal = 1; |
296 |
> |
// simError(); |
297 |
> |
//} |
298 |
> |
} |
299 |
|
|
300 |
< |
sprintf(buffer,"\t%G\t%G;", chi, integralOfChidt); |
301 |
< |
parameters += buffer; |
305 |
< |
|
306 |
< |
for(int i = 0; i < 3; i++){ |
307 |
< |
sprintf(buffer,"\t%G\t%G\t%G;", eta[i][0], eta[i][1], eta[i][2]); |
308 |
< |
parameters += buffer; |
300 |
> |
void NPTf::saveEta() { |
301 |
> |
currentSnapshot_->setEta(eta); |
302 |
|
} |
303 |
|
|
311 |
– |
return parameters; |
312 |
– |
|
304 |
|
} |