| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
*/ |
| 42 |
|
| 43 |
#include "brains/SimInfo.hpp" |
| 44 |
#include "brains/Thermo.hpp" |
| 45 |
#include "integrators/IntegratorCreator.hpp" |
| 46 |
#include "integrators/NPTf.hpp" |
| 47 |
#include "primitives/Molecule.hpp" |
| 48 |
#include "utils/PhysicalConstants.hpp" |
| 49 |
#include "utils/simError.h" |
| 50 |
|
| 51 |
namespace OpenMD { |
| 52 |
|
| 53 |
// Basic non-isotropic thermostating and barostating via the Melchionna |
| 54 |
// modification of the Hoover algorithm: |
| 55 |
// |
| 56 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
| 57 |
// Molec. Phys., 78, 533. |
| 58 |
// |
| 59 |
// and |
| 60 |
// |
| 61 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
| 62 |
|
| 63 |
void NPTf::evolveEtaA() { |
| 64 |
|
| 65 |
int i, j; |
| 66 |
|
| 67 |
for(i = 0; i < 3; i ++){ |
| 68 |
for(j = 0; j < 3; j++){ |
| 69 |
if( i == j) { |
| 70 |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
| 71 |
} else { |
| 72 |
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
| 73 |
} |
| 74 |
} |
| 75 |
} |
| 76 |
|
| 77 |
for(i = 0; i < 3; i++) { |
| 78 |
for (j = 0; j < 3; j++) { |
| 79 |
oldEta(i, j) = eta(i, j); |
| 80 |
} |
| 81 |
} |
| 82 |
|
| 83 |
} |
| 84 |
|
| 85 |
void NPTf::evolveEtaB() { |
| 86 |
|
| 87 |
int i; |
| 88 |
int j; |
| 89 |
|
| 90 |
for(i = 0; i < 3; i++) { |
| 91 |
for (j = 0; j < 3; j++) { |
| 92 |
prevEta(i, j) = eta(i, j); |
| 93 |
} |
| 94 |
} |
| 95 |
|
| 96 |
for(i = 0; i < 3; i ++){ |
| 97 |
for(j = 0; j < 3; j++){ |
| 98 |
if( i == j) { |
| 99 |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
| 100 |
(press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
| 101 |
} else { |
| 102 |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
| 103 |
} |
| 104 |
} |
| 105 |
} |
| 106 |
|
| 107 |
|
| 108 |
} |
| 109 |
|
| 110 |
void NPTf::calcVelScale(){ |
| 111 |
|
| 112 |
for (int i = 0; i < 3; i++ ) { |
| 113 |
for (int j = 0; j < 3; j++ ) { |
| 114 |
vScale(i, j) = eta(i, j); |
| 115 |
|
| 116 |
if (i == j) { |
| 117 |
vScale(i, j) += thermostat.first; |
| 118 |
} |
| 119 |
} |
| 120 |
} |
| 121 |
} |
| 122 |
|
| 123 |
void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
| 124 |
sc = vScale * vel; |
| 125 |
} |
| 126 |
|
| 127 |
void NPTf::getVelScaleB(Vector3d& sc, int index ) { |
| 128 |
sc = vScale * oldVel[index]; |
| 129 |
} |
| 130 |
|
| 131 |
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
| 132 |
|
| 133 |
/**@todo */ |
| 134 |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
| 135 |
sc = eta * rj; |
| 136 |
} |
| 137 |
|
| 138 |
void NPTf::scaleSimBox(){ |
| 139 |
|
| 140 |
int i; |
| 141 |
int j; |
| 142 |
int k; |
| 143 |
Mat3x3d scaleMat; |
| 144 |
RealType eta2ij; |
| 145 |
RealType bigScale, smallScale, offDiagMax; |
| 146 |
Mat3x3d hm; |
| 147 |
Mat3x3d hmnew; |
| 148 |
|
| 149 |
|
| 150 |
|
| 151 |
// Scale the box after all the positions have been moved: |
| 152 |
|
| 153 |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
| 154 |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
| 155 |
|
| 156 |
bigScale = 1.0; |
| 157 |
smallScale = 1.0; |
| 158 |
offDiagMax = 0.0; |
| 159 |
|
| 160 |
for(i=0; i<3; i++){ |
| 161 |
for(j=0; j<3; j++){ |
| 162 |
|
| 163 |
// Calculate the matrix Product of the eta array (we only need |
| 164 |
// the ij element right now): |
| 165 |
|
| 166 |
eta2ij = 0.0; |
| 167 |
for(k=0; k<3; k++){ |
| 168 |
eta2ij += eta(i, k) * eta(k, j); |
| 169 |
} |
| 170 |
|
| 171 |
scaleMat(i, j) = 0.0; |
| 172 |
// identity matrix (see above): |
| 173 |
if (i == j) scaleMat(i, j) = 1.0; |
| 174 |
// Taylor expansion for the exponential truncated at second order: |
| 175 |
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
| 176 |
|
| 177 |
|
| 178 |
if (i != j) |
| 179 |
if (fabs(scaleMat(i, j)) > offDiagMax) |
| 180 |
offDiagMax = fabs(scaleMat(i, j)); |
| 181 |
} |
| 182 |
|
| 183 |
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
| 184 |
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
| 185 |
} |
| 186 |
|
| 187 |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
| 188 |
sprintf( painCave.errMsg, |
| 189 |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
| 190 |
" Check your tauBarostat, as it is probably too small!\n\n" |
| 191 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 192 |
" [%lf\t%lf\t%lf]\n" |
| 193 |
" [%lf\t%lf\t%lf]\n" |
| 194 |
" eta = [%lf\t%lf\t%lf]\n" |
| 195 |
" [%lf\t%lf\t%lf]\n" |
| 196 |
" [%lf\t%lf\t%lf]\n", |
| 197 |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
| 198 |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
| 199 |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
| 200 |
eta(0, 0),eta(0, 1),eta(0, 2), |
| 201 |
eta(1, 0),eta(1, 1),eta(1, 2), |
| 202 |
eta(2, 0),eta(2, 1),eta(2, 2)); |
| 203 |
painCave.isFatal = 1; |
| 204 |
simError(); |
| 205 |
} else if (offDiagMax > 0.01) { |
| 206 |
sprintf( painCave.errMsg, |
| 207 |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
| 208 |
" Check your tauBarostat, as it is probably too small!\n\n" |
| 209 |
" scaleMat = [%lf\t%lf\t%lf]\n" |
| 210 |
" [%lf\t%lf\t%lf]\n" |
| 211 |
" [%lf\t%lf\t%lf]\n" |
| 212 |
" eta = [%lf\t%lf\t%lf]\n" |
| 213 |
" [%lf\t%lf\t%lf]\n" |
| 214 |
" [%lf\t%lf\t%lf]\n", |
| 215 |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
| 216 |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
| 217 |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
| 218 |
eta(0, 0),eta(0, 1),eta(0, 2), |
| 219 |
eta(1, 0),eta(1, 1),eta(1, 2), |
| 220 |
eta(2, 0),eta(2, 1),eta(2, 2)); |
| 221 |
painCave.isFatal = 1; |
| 222 |
simError(); |
| 223 |
} else { |
| 224 |
|
| 225 |
Mat3x3d hmat = snap->getHmat(); |
| 226 |
hmat = hmat *scaleMat; |
| 227 |
snap->setHmat(hmat); |
| 228 |
|
| 229 |
} |
| 230 |
} |
| 231 |
|
| 232 |
bool NPTf::etaConverged() { |
| 233 |
int i; |
| 234 |
RealType diffEta, sumEta; |
| 235 |
|
| 236 |
sumEta = 0; |
| 237 |
for(i = 0; i < 3; i++) { |
| 238 |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
| 239 |
} |
| 240 |
|
| 241 |
diffEta = sqrt( sumEta / 3.0 ); |
| 242 |
|
| 243 |
return ( diffEta <= etaTolerance ); |
| 244 |
} |
| 245 |
|
| 246 |
RealType NPTf::calcConservedQuantity(){ |
| 247 |
|
| 248 |
thermostat = snap->getThermostat(); |
| 249 |
loadEta(); |
| 250 |
|
| 251 |
// We need NkBT a lot, so just set it here: This is the RAW number |
| 252 |
// of integrableObjects, so no subtraction or addition of constraints or |
| 253 |
// orientational degrees of freedom: |
| 254 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
| 255 |
|
| 256 |
// fkBT is used because the thermostat operates on more degrees of freedom |
| 257 |
// than the barostat (when there are particles with orientational degrees |
| 258 |
// of freedom). |
| 259 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
| 260 |
|
| 261 |
RealType conservedQuantity; |
| 262 |
RealType totalEnergy; |
| 263 |
RealType thermostat_kinetic; |
| 264 |
RealType thermostat_potential; |
| 265 |
RealType barostat_kinetic; |
| 266 |
RealType barostat_potential; |
| 267 |
RealType trEta; |
| 268 |
|
| 269 |
totalEnergy = thermo.getTotalEnergy(); |
| 270 |
|
| 271 |
thermostat_kinetic = fkBT * tt2 * thermostat.first * |
| 272 |
thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
| 273 |
|
| 274 |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
| 275 |
|
| 276 |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
| 277 |
trEta = tmp.trace(); |
| 278 |
|
| 279 |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
| 280 |
|
| 281 |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
| 282 |
|
| 283 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
| 284 |
barostat_kinetic + barostat_potential; |
| 285 |
|
| 286 |
return conservedQuantity; |
| 287 |
|
| 288 |
} |
| 289 |
|
| 290 |
void NPTf::loadEta() { |
| 291 |
eta= snap->getBarostat(); |
| 292 |
|
| 293 |
//if (!eta.isDiagonal()) { |
| 294 |
// sprintf( painCave.errMsg, |
| 295 |
// "NPTf error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
| 296 |
// painCave.isFatal = 1; |
| 297 |
// simError(); |
| 298 |
//} |
| 299 |
} |
| 300 |
|
| 301 |
void NPTf::saveEta() { |
| 302 |
snap->setBarostat(eta); |
| 303 |
} |
| 304 |
|
| 305 |
} |