6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include "brains/SimInfo.hpp" |
45 |
|
#include "integrators/IntegratorCreator.hpp" |
46 |
|
#include "integrators/NPTf.hpp" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
< |
#include "utils/OOPSEConstant.hpp" |
48 |
> |
#include "utils/PhysicalConstants.hpp" |
49 |
|
#include "utils/simError.h" |
50 |
|
|
51 |
< |
namespace oopse { |
51 |
> |
namespace OpenMD { |
52 |
|
|
53 |
|
// Basic non-isotropic thermostating and barostating via the Melchionna |
54 |
|
// modification of the Hoover algorithm: |
67 |
|
for(i = 0; i < 3; i ++){ |
68 |
|
for(j = 0; j < 3; j++){ |
69 |
|
if( i == j) { |
70 |
< |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
70 |
> |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
71 |
|
} else { |
72 |
|
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
73 |
|
} |
97 |
|
for(j = 0; j < 3; j++){ |
98 |
|
if( i == j) { |
99 |
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
100 |
< |
(press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
100 |
> |
(press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
101 |
|
} else { |
102 |
|
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
103 |
|
} |
114 |
|
vScale(i, j) = eta(i, j); |
115 |
|
|
116 |
|
if (i == j) { |
117 |
< |
vScale(i, j) += chi; |
117 |
> |
vScale(i, j) += thermostat.first; |
118 |
|
} |
119 |
|
} |
120 |
|
} |
131 |
|
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
132 |
|
|
133 |
|
/**@todo */ |
134 |
< |
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
134 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
135 |
|
sc = eta * rj; |
136 |
|
} |
137 |
|
|
141 |
|
int j; |
142 |
|
int k; |
143 |
|
Mat3x3d scaleMat; |
144 |
< |
double eta2ij; |
145 |
< |
double bigScale, smallScale, offDiagMax; |
144 |
> |
RealType eta2ij; |
145 |
> |
RealType bigScale, smallScale, offDiagMax; |
146 |
|
Mat3x3d hm; |
147 |
|
Mat3x3d hmnew; |
148 |
|
|
222 |
|
simError(); |
223 |
|
} else { |
224 |
|
|
225 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
225 |
> |
Mat3x3d hmat = snap->getHmat(); |
226 |
|
hmat = hmat *scaleMat; |
227 |
< |
currentSnapshot_->setHmat(hmat); |
227 |
> |
snap->setHmat(hmat); |
228 |
|
|
229 |
|
} |
230 |
|
} |
231 |
|
|
232 |
|
bool NPTf::etaConverged() { |
233 |
|
int i; |
234 |
< |
double diffEta, sumEta; |
234 |
> |
RealType diffEta, sumEta; |
235 |
|
|
236 |
|
sumEta = 0; |
237 |
|
for(i = 0; i < 3; i++) { |
243 |
|
return ( diffEta <= etaTolerance ); |
244 |
|
} |
245 |
|
|
246 |
< |
double NPTf::calcConservedQuantity(){ |
247 |
< |
|
248 |
< |
chi= currentSnapshot_->getChi(); |
248 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
246 |
> |
RealType NPTf::calcConservedQuantity(){ |
247 |
> |
|
248 |
> |
thermostat = snap->getThermostat(); |
249 |
|
loadEta(); |
250 |
|
|
251 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
252 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
253 |
|
// orientational degrees of freedom: |
254 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
254 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
255 |
|
|
256 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
257 |
|
// than the barostat (when there are particles with orientational degrees |
258 |
|
// of freedom). |
259 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
259 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
260 |
|
|
261 |
< |
double conservedQuantity; |
262 |
< |
double totalEnergy; |
263 |
< |
double thermostat_kinetic; |
264 |
< |
double thermostat_potential; |
265 |
< |
double barostat_kinetic; |
266 |
< |
double barostat_potential; |
267 |
< |
double trEta; |
261 |
> |
RealType conservedQuantity; |
262 |
> |
RealType totalEnergy; |
263 |
> |
RealType thermostat_kinetic; |
264 |
> |
RealType thermostat_potential; |
265 |
> |
RealType barostat_kinetic; |
266 |
> |
RealType barostat_potential; |
267 |
> |
RealType trEta; |
268 |
|
|
269 |
< |
totalEnergy = thermo.getTotalE(); |
269 |
> |
totalEnergy = thermo.getTotalEnergy(); |
270 |
> |
|
271 |
> |
thermostat_kinetic = fkBT * tt2 * thermostat.first * |
272 |
> |
thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
273 |
|
|
274 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
274 |
> |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
275 |
|
|
276 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
274 |
< |
|
275 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
276 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
277 |
|
trEta = tmp.trace(); |
278 |
|
|
279 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
279 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
280 |
|
|
281 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
281 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
282 |
|
|
283 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
284 |
|
barostat_kinetic + barostat_potential; |
288 |
|
} |
289 |
|
|
290 |
|
void NPTf::loadEta() { |
291 |
< |
eta= currentSnapshot_->getEta(); |
291 |
> |
eta= snap->getBarostat(); |
292 |
|
|
293 |
|
//if (!eta.isDiagonal()) { |
294 |
|
// sprintf( painCave.errMsg, |
299 |
|
} |
300 |
|
|
301 |
|
void NPTf::saveEta() { |
302 |
< |
currentSnapshot_->setEta(eta); |
302 |
> |
snap->setBarostat(eta); |
303 |
|
} |
304 |
|
|
305 |
|
} |