1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include "brains/SimInfo.hpp" |
45 |
|
#include "integrators/IntegratorCreator.hpp" |
46 |
|
#include "integrators/NPTf.hpp" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
< |
#include "utils/OOPSEConstant.hpp" |
48 |
> |
#include "utils/PhysicalConstants.hpp" |
49 |
|
#include "utils/simError.h" |
50 |
|
|
51 |
< |
namespace oopse { |
51 |
> |
namespace OpenMD { |
52 |
|
|
53 |
< |
// Basic non-isotropic thermostating and barostating via the Melchionna |
54 |
< |
// modification of the Hoover algorithm: |
55 |
< |
// |
56 |
< |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
57 |
< |
// Molec. Phys., 78, 533. |
58 |
< |
// |
59 |
< |
// and |
60 |
< |
// |
61 |
< |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
53 |
> |
// Basic non-isotropic thermostating and barostating via the Melchionna |
54 |
> |
// modification of the Hoover algorithm: |
55 |
> |
// |
56 |
> |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
57 |
> |
// Molec. Phys., 78, 533. |
58 |
> |
// |
59 |
> |
// and |
60 |
> |
// |
61 |
> |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
62 |
|
|
63 |
< |
void NPTf::evolveEtaA() { |
63 |
> |
void NPTf::evolveEtaA() { |
64 |
|
|
65 |
< |
int i, j; |
65 |
> |
int i, j; |
66 |
|
|
67 |
|
for(i = 0; i < 3; i ++){ |
68 |
< |
for(j = 0; j < 3; j++){ |
69 |
< |
if( i == j) { |
70 |
< |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
71 |
< |
} else { |
72 |
< |
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
73 |
< |
} |
74 |
< |
} |
68 |
> |
for(j = 0; j < 3; j++){ |
69 |
> |
if( i == j) { |
70 |
> |
eta(i, j) += dt2 * instaVol * (press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
71 |
> |
} else { |
72 |
> |
eta(i, j) += dt2 * instaVol * press(i, j) / (NkBT*tb2); |
73 |
> |
} |
74 |
> |
} |
75 |
|
} |
76 |
|
|
77 |
|
for(i = 0; i < 3; i++) { |
78 |
< |
for (j = 0; j < 3; j++) { |
78 |
> |
for (j = 0; j < 3; j++) { |
79 |
|
oldEta(i, j) = eta(i, j); |
80 |
< |
} |
80 |
> |
} |
81 |
|
} |
82 |
|
|
83 |
< |
} |
83 |
> |
} |
84 |
|
|
85 |
< |
void NPTf::evolveEtaB() { |
85 |
> |
void NPTf::evolveEtaB() { |
86 |
|
|
87 |
|
int i; |
88 |
|
int j; |
89 |
|
|
90 |
|
for(i = 0; i < 3; i++) { |
91 |
< |
for (j = 0; j < 3; j++) { |
92 |
< |
prevEta(i, j) = eta(i, j); |
93 |
< |
} |
91 |
> |
for (j = 0; j < 3; j++) { |
92 |
> |
prevEta(i, j) = eta(i, j); |
93 |
> |
} |
94 |
|
} |
95 |
|
|
96 |
|
for(i = 0; i < 3; i ++){ |
97 |
< |
for(j = 0; j < 3; j++){ |
98 |
< |
if( i == j) { |
99 |
< |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
100 |
< |
(press(i, j) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
101 |
< |
} else { |
102 |
< |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
103 |
< |
} |
104 |
< |
} |
97 |
> |
for(j = 0; j < 3; j++){ |
98 |
> |
if( i == j) { |
99 |
> |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * |
100 |
> |
(press(i, j) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
101 |
> |
} else { |
102 |
> |
eta(i, j) = oldEta(i, j) + dt2 * instaVol * press(i, j) / (NkBT*tb2); |
103 |
> |
} |
104 |
> |
} |
105 |
|
} |
106 |
|
|
107 |
|
|
108 |
< |
} |
108 |
> |
} |
109 |
|
|
110 |
< |
void NPTf::calcVelScale(){ |
110 |
> |
void NPTf::calcVelScale(){ |
111 |
|
|
112 |
< |
for (int i = 0; i < 3; i++ ) { |
113 |
< |
for (int j = 0; j < 3; j++ ) { |
114 |
< |
vScale(i, j) = eta(i, j); |
112 |
> |
for (int i = 0; i < 3; i++ ) { |
113 |
> |
for (int j = 0; j < 3; j++ ) { |
114 |
> |
vScale(i, j) = eta(i, j); |
115 |
|
|
116 |
< |
if (i == j) { |
117 |
< |
vScale(i, j) += chi; |
116 |
> |
if (i == j) { |
117 |
> |
vScale(i, j) += thermostat.first; |
118 |
> |
} |
119 |
|
} |
120 |
|
} |
121 |
|
} |
120 |
– |
} |
122 |
|
|
123 |
< |
void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
123 |
> |
void NPTf::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
124 |
|
sc = vScale * vel; |
125 |
< |
} |
125 |
> |
} |
126 |
|
|
127 |
< |
void NPTf::getVelScaleB(Vector3d& sc, int index ) { |
128 |
< |
sc = vScale * oldVel[index]; |
129 |
< |
} |
127 |
> |
void NPTf::getVelScaleB(Vector3d& sc, int index ) { |
128 |
> |
sc = vScale * oldVel[index]; |
129 |
> |
} |
130 |
|
|
131 |
< |
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
131 |
> |
void NPTf::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
132 |
|
|
133 |
|
/**@todo */ |
134 |
< |
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
134 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
135 |
|
sc = eta * rj; |
136 |
< |
} |
136 |
> |
} |
137 |
|
|
138 |
< |
void NPTf::scaleSimBox(){ |
138 |
> |
void NPTf::scaleSimBox(){ |
139 |
|
|
140 |
< |
int i; |
141 |
< |
int j; |
142 |
< |
int k; |
143 |
< |
Mat3x3d scaleMat; |
144 |
< |
double eta2ij; |
145 |
< |
double bigScale, smallScale, offDiagMax; |
146 |
< |
Mat3x3d hm; |
147 |
< |
Mat3x3d hmnew; |
140 |
> |
int i; |
141 |
> |
int j; |
142 |
> |
int k; |
143 |
> |
Mat3x3d scaleMat; |
144 |
> |
RealType eta2ij; |
145 |
> |
RealType bigScale, smallScale, offDiagMax; |
146 |
> |
Mat3x3d hm; |
147 |
> |
Mat3x3d hmnew; |
148 |
|
|
149 |
|
|
150 |
|
|
151 |
< |
// Scale the box after all the positions have been moved: |
151 |
> |
// Scale the box after all the positions have been moved: |
152 |
|
|
153 |
< |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
154 |
< |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
153 |
> |
// Use a taylor expansion for eta products: Hmat = Hmat . exp(dt * etaMat) |
154 |
> |
// Hmat = Hmat . ( Ident + dt * etaMat + dt^2 * etaMat*etaMat / 2) |
155 |
|
|
156 |
< |
bigScale = 1.0; |
157 |
< |
smallScale = 1.0; |
158 |
< |
offDiagMax = 0.0; |
156 |
> |
bigScale = 1.0; |
157 |
> |
smallScale = 1.0; |
158 |
> |
offDiagMax = 0.0; |
159 |
|
|
160 |
< |
for(i=0; i<3; i++){ |
161 |
< |
for(j=0; j<3; j++){ |
160 |
> |
for(i=0; i<3; i++){ |
161 |
> |
for(j=0; j<3; j++){ |
162 |
|
|
163 |
< |
// Calculate the matrix Product of the eta array (we only need |
164 |
< |
// the ij element right now): |
163 |
> |
// Calculate the matrix Product of the eta array (we only need |
164 |
> |
// the ij element right now): |
165 |
|
|
166 |
< |
eta2ij = 0.0; |
167 |
< |
for(k=0; k<3; k++){ |
168 |
< |
eta2ij += eta(i, k) * eta(k, j); |
169 |
< |
} |
166 |
> |
eta2ij = 0.0; |
167 |
> |
for(k=0; k<3; k++){ |
168 |
> |
eta2ij += eta(i, k) * eta(k, j); |
169 |
> |
} |
170 |
|
|
171 |
< |
scaleMat(i, j) = 0.0; |
172 |
< |
// identity matrix (see above): |
173 |
< |
if (i == j) scaleMat(i, j) = 1.0; |
174 |
< |
// Taylor expansion for the exponential truncated at second order: |
175 |
< |
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
171 |
> |
scaleMat(i, j) = 0.0; |
172 |
> |
// identity matrix (see above): |
173 |
> |
if (i == j) scaleMat(i, j) = 1.0; |
174 |
> |
// Taylor expansion for the exponential truncated at second order: |
175 |
> |
scaleMat(i, j) += dt*eta(i, j) + 0.5*dt*dt*eta2ij; |
176 |
|
|
177 |
|
|
178 |
< |
if (i != j) |
179 |
< |
if (fabs(scaleMat(i, j)) > offDiagMax) |
180 |
< |
offDiagMax = fabs(scaleMat(i, j)); |
178 |
> |
if (i != j) |
179 |
> |
if (fabs(scaleMat(i, j)) > offDiagMax) |
180 |
> |
offDiagMax = fabs(scaleMat(i, j)); |
181 |
> |
} |
182 |
> |
|
183 |
> |
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
184 |
> |
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
185 |
|
} |
186 |
|
|
187 |
< |
if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i); |
188 |
< |
if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i); |
189 |
< |
} |
187 |
> |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
188 |
> |
sprintf( painCave.errMsg, |
189 |
> |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
190 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
191 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
192 |
> |
" [%lf\t%lf\t%lf]\n" |
193 |
> |
" [%lf\t%lf\t%lf]\n" |
194 |
> |
" eta = [%lf\t%lf\t%lf]\n" |
195 |
> |
" [%lf\t%lf\t%lf]\n" |
196 |
> |
" [%lf\t%lf\t%lf]\n", |
197 |
> |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
198 |
> |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
199 |
> |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
200 |
> |
eta(0, 0),eta(0, 1),eta(0, 2), |
201 |
> |
eta(1, 0),eta(1, 1),eta(1, 2), |
202 |
> |
eta(2, 0),eta(2, 1),eta(2, 2)); |
203 |
> |
painCave.isFatal = 1; |
204 |
> |
simError(); |
205 |
> |
} else if (offDiagMax > 0.01) { |
206 |
> |
sprintf( painCave.errMsg, |
207 |
> |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
208 |
> |
" Check your tauBarostat, as it is probably too small!\n\n" |
209 |
> |
" scaleMat = [%lf\t%lf\t%lf]\n" |
210 |
> |
" [%lf\t%lf\t%lf]\n" |
211 |
> |
" [%lf\t%lf\t%lf]\n" |
212 |
> |
" eta = [%lf\t%lf\t%lf]\n" |
213 |
> |
" [%lf\t%lf\t%lf]\n" |
214 |
> |
" [%lf\t%lf\t%lf]\n", |
215 |
> |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
216 |
> |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
217 |
> |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
218 |
> |
eta(0, 0),eta(0, 1),eta(0, 2), |
219 |
> |
eta(1, 0),eta(1, 1),eta(1, 2), |
220 |
> |
eta(2, 0),eta(2, 1),eta(2, 2)); |
221 |
> |
painCave.isFatal = 1; |
222 |
> |
simError(); |
223 |
> |
} else { |
224 |
|
|
225 |
< |
if ((bigScale > 1.01) || (smallScale < 0.99)) { |
226 |
< |
sprintf( painCave.errMsg, |
227 |
< |
"NPTf error: Attempting a Box scaling of more than 1 percent.\n" |
189 |
< |
" Check your tauBarostat, as it is probably too small!\n\n" |
190 |
< |
" scaleMat = [%lf\t%lf\t%lf]\n" |
191 |
< |
" [%lf\t%lf\t%lf]\n" |
192 |
< |
" [%lf\t%lf\t%lf]\n" |
193 |
< |
" eta = [%lf\t%lf\t%lf]\n" |
194 |
< |
" [%lf\t%lf\t%lf]\n" |
195 |
< |
" [%lf\t%lf\t%lf]\n", |
196 |
< |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
197 |
< |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
198 |
< |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
199 |
< |
eta(0, 0),eta(0, 1),eta(0, 2), |
200 |
< |
eta(1, 0),eta(1, 1),eta(1, 2), |
201 |
< |
eta(2, 0),eta(2, 1),eta(2, 2)); |
202 |
< |
painCave.isFatal = 1; |
203 |
< |
simError(); |
204 |
< |
} else if (offDiagMax > 0.01) { |
205 |
< |
sprintf( painCave.errMsg, |
206 |
< |
"NPTf error: Attempting an off-diagonal Box scaling of more than 1 percent.\n" |
207 |
< |
" Check your tauBarostat, as it is probably too small!\n\n" |
208 |
< |
" scaleMat = [%lf\t%lf\t%lf]\n" |
209 |
< |
" [%lf\t%lf\t%lf]\n" |
210 |
< |
" [%lf\t%lf\t%lf]\n" |
211 |
< |
" eta = [%lf\t%lf\t%lf]\n" |
212 |
< |
" [%lf\t%lf\t%lf]\n" |
213 |
< |
" [%lf\t%lf\t%lf]\n", |
214 |
< |
scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2), |
215 |
< |
scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2), |
216 |
< |
scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2), |
217 |
< |
eta(0, 0),eta(0, 1),eta(0, 2), |
218 |
< |
eta(1, 0),eta(1, 1),eta(1, 2), |
219 |
< |
eta(2, 0),eta(2, 1),eta(2, 2)); |
220 |
< |
painCave.isFatal = 1; |
221 |
< |
simError(); |
222 |
< |
} else { |
223 |
< |
|
224 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
225 |
< |
hmat = hmat *scaleMat; |
226 |
< |
currentSnapshot_->setHmat(hmat); |
225 |
> |
Mat3x3d hmat = snap->getHmat(); |
226 |
> |
hmat = hmat *scaleMat; |
227 |
> |
snap->setHmat(hmat); |
228 |
|
|
229 |
+ |
} |
230 |
|
} |
229 |
– |
} |
231 |
|
|
232 |
< |
bool NPTf::etaConverged() { |
232 |
> |
bool NPTf::etaConverged() { |
233 |
|
int i; |
234 |
< |
double diffEta, sumEta; |
234 |
> |
RealType diffEta, sumEta; |
235 |
|
|
236 |
|
sumEta = 0; |
237 |
|
for(i = 0; i < 3; i++) { |
238 |
< |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
238 |
> |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
239 |
|
} |
240 |
|
|
241 |
|
diffEta = sqrt( sumEta / 3.0 ); |
242 |
|
|
243 |
|
return ( diffEta <= etaTolerance ); |
244 |
< |
} |
244 |
> |
} |
245 |
|
|
246 |
< |
double NPTf::calcConservedQuantity(){ |
247 |
< |
|
248 |
< |
chi= currentSnapshot_->getChi(); |
248 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
246 |
> |
RealType NPTf::calcConservedQuantity(){ |
247 |
> |
|
248 |
> |
thermostat = snap->getThermostat(); |
249 |
|
loadEta(); |
250 |
|
|
251 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
252 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
253 |
|
// orientational degrees of freedom: |
254 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
254 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
255 |
|
|
256 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
257 |
|
// than the barostat (when there are particles with orientational degrees |
258 |
|
// of freedom). |
259 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
259 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
260 |
|
|
261 |
< |
double conservedQuantity; |
262 |
< |
double totalEnergy; |
263 |
< |
double thermostat_kinetic; |
264 |
< |
double thermostat_potential; |
265 |
< |
double barostat_kinetic; |
266 |
< |
double barostat_potential; |
267 |
< |
double trEta; |
261 |
> |
RealType conservedQuantity; |
262 |
> |
RealType totalEnergy; |
263 |
> |
RealType thermostat_kinetic; |
264 |
> |
RealType thermostat_potential; |
265 |
> |
RealType barostat_kinetic; |
266 |
> |
RealType barostat_potential; |
267 |
> |
RealType trEta; |
268 |
|
|
269 |
< |
totalEnergy = thermo.getTotalE(); |
269 |
> |
totalEnergy = thermo.getTotalEnergy(); |
270 |
> |
|
271 |
> |
thermostat_kinetic = fkBT * tt2 * thermostat.first * |
272 |
> |
thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
273 |
|
|
274 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
274 |
> |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
275 |
|
|
276 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
274 |
< |
|
275 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
276 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
277 |
|
trEta = tmp.trace(); |
278 |
|
|
279 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
279 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
280 |
|
|
281 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
281 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
282 |
|
|
283 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
284 |
< |
barostat_kinetic + barostat_potential; |
284 |
> |
barostat_kinetic + barostat_potential; |
285 |
|
|
286 |
|
return conservedQuantity; |
287 |
|
|
288 |
< |
} |
288 |
> |
} |
289 |
|
|
290 |
< |
void NPTf::loadEta() { |
291 |
< |
eta= currentSnapshot_->getEta(); |
290 |
> |
void NPTf::loadEta() { |
291 |
> |
eta= snap->getBarostat(); |
292 |
|
|
293 |
|
//if (!eta.isDiagonal()) { |
294 |
|
// sprintf( painCave.errMsg, |
296 |
|
// painCave.isFatal = 1; |
297 |
|
// simError(); |
298 |
|
//} |
299 |
< |
} |
299 |
> |
} |
300 |
|
|
301 |
< |
void NPTf::saveEta() { |
302 |
< |
currentSnapshot_->setEta(eta); |
303 |
< |
} |
301 |
> |
void NPTf::saveEta() { |
302 |
> |
snap->setBarostat(eta); |
303 |
> |
} |
304 |
|
|
305 |
|
} |