1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
61 |
|
|
62 |
|
namespace oopse { |
63 |
|
|
64 |
< |
NPT::NPT(SimInfo* info) : |
64 |
> |
NPT::NPT(SimInfo* info) : |
65 |
|
VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { |
66 |
|
|
67 |
< |
Globals* simParams = info_->getSimParams(); |
67 |
> |
Globals* simParams = info_->getSimParams(); |
68 |
|
|
69 |
< |
if (!simParams->getUseInitXSstate()) { |
69 |
> |
if (!simParams->getUseIntialExtendedSystemState()) { |
70 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
71 |
|
currSnapshot->setChi(0.0); |
72 |
|
currSnapshot->setIntegralOfChiDt(0.0); |
73 |
|
currSnapshot->setEta(Mat3x3d(0.0)); |
74 |
< |
} |
74 |
> |
} |
75 |
|
|
76 |
< |
if (!simParams->haveTargetTemp()) { |
76 |
> |
if (!simParams->haveTargetTemp()) { |
77 |
|
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); |
78 |
|
painCave.isFatal = 1; |
79 |
|
painCave.severity = OOPSE_ERROR; |
80 |
|
simError(); |
81 |
< |
} else { |
81 |
> |
} else { |
82 |
|
targetTemp = simParams->getTargetTemp(); |
83 |
< |
} |
83 |
> |
} |
84 |
|
|
85 |
< |
// We must set tauThermostat |
86 |
< |
if (!simParams->haveTauThermostat()) { |
85 |
> |
// We must set tauThermostat |
86 |
> |
if (!simParams->haveTauThermostat()) { |
87 |
|
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
88 |
< |
"\tintegrator, you must set tauThermostat_.\n"); |
88 |
> |
"\tintegrator, you must set tauThermostat_.\n"); |
89 |
|
|
90 |
|
painCave.severity = OOPSE_ERROR; |
91 |
|
painCave.isFatal = 1; |
92 |
|
simError(); |
93 |
< |
} else { |
93 |
> |
} else { |
94 |
|
tauThermostat = simParams->getTauThermostat(); |
95 |
< |
} |
95 |
> |
} |
96 |
|
|
97 |
< |
if (!simParams->haveTargetPressure()) { |
97 |
> |
if (!simParams->haveTargetPressure()) { |
98 |
|
sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" |
99 |
< |
" without a targetPressure!\n"); |
99 |
> |
" without a targetPressure!\n"); |
100 |
|
|
101 |
|
painCave.isFatal = 1; |
102 |
|
simError(); |
103 |
< |
} else { |
103 |
> |
} else { |
104 |
|
targetPressure = simParams->getTargetPressure(); |
105 |
< |
} |
105 |
> |
} |
106 |
|
|
107 |
< |
if (!simParams->haveTauBarostat()) { |
107 |
> |
if (!simParams->haveTauBarostat()) { |
108 |
|
sprintf(painCave.errMsg, |
109 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
110 |
|
painCave.severity = OOPSE_ERROR; |
111 |
|
painCave.isFatal = 1; |
112 |
|
simError(); |
113 |
< |
} else { |
113 |
> |
} else { |
114 |
|
tauBarostat = simParams->getTauBarostat(); |
115 |
< |
} |
115 |
> |
} |
116 |
|
|
117 |
< |
tt2 = tauThermostat * tauThermostat; |
118 |
< |
tb2 = tauBarostat * tauBarostat; |
117 |
> |
tt2 = tauThermostat * tauThermostat; |
118 |
> |
tb2 = tauBarostat * tauBarostat; |
119 |
|
|
120 |
< |
update(); |
121 |
< |
} |
120 |
> |
update(); |
121 |
> |
} |
122 |
|
|
123 |
< |
NPT::~NPT() { |
124 |
< |
} |
123 |
> |
NPT::~NPT() { |
124 |
> |
} |
125 |
|
|
126 |
< |
void NPT::doUpdate() { |
126 |
> |
void NPT::doUpdate() { |
127 |
|
|
128 |
|
oldPos.resize(info_->getNIntegrableObjects()); |
129 |
|
oldVel.resize(info_->getNIntegrableObjects()); |
130 |
|
oldJi.resize(info_->getNIntegrableObjects()); |
131 |
|
|
132 |
< |
} |
132 |
> |
} |
133 |
|
|
134 |
< |
void NPT::moveA() { |
134 |
> |
void NPT::moveA() { |
135 |
|
SimInfo::MoleculeIterator i; |
136 |
|
Molecule::IntegrableObjectIterator j; |
137 |
|
Molecule* mol; |
138 |
|
StuntDouble* integrableObject; |
139 |
|
Vector3d Tb, ji; |
140 |
< |
double mass; |
140 |
> |
RealType mass; |
141 |
|
Vector3d vel; |
142 |
|
Vector3d pos; |
143 |
|
Vector3d frc; |
160 |
|
calcVelScale(); |
161 |
|
|
162 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
163 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
164 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
163 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
164 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
165 |
|
|
166 |
< |
vel = integrableObject->getVel(); |
167 |
< |
frc = integrableObject->getFrc(); |
166 |
> |
vel = integrableObject->getVel(); |
167 |
> |
frc = integrableObject->getFrc(); |
168 |
|
|
169 |
< |
mass = integrableObject->getMass(); |
169 |
> |
mass = integrableObject->getMass(); |
170 |
|
|
171 |
< |
getVelScaleA(sc, vel); |
171 |
> |
getVelScaleA(sc, vel); |
172 |
|
|
173 |
< |
// velocity half step (use chi from previous step here): |
174 |
< |
//vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
175 |
< |
vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
176 |
< |
integrableObject->setVel(vel); |
173 |
> |
// velocity half step (use chi from previous step here): |
174 |
> |
//vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
175 |
> |
vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
176 |
> |
integrableObject->setVel(vel); |
177 |
|
|
178 |
< |
if (integrableObject->isDirectional()) { |
178 |
> |
if (integrableObject->isDirectional()) { |
179 |
|
|
180 |
< |
// get and convert the torque to body frame |
180 |
> |
// get and convert the torque to body frame |
181 |
|
|
182 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
182 |
> |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
183 |
|
|
184 |
< |
// get the angular momentum, and propagate a half step |
184 |
> |
// get the angular momentum, and propagate a half step |
185 |
|
|
186 |
< |
ji = integrableObject->getJ(); |
186 |
> |
ji = integrableObject->getJ(); |
187 |
|
|
188 |
< |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
189 |
< |
ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; |
188 |
> |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
189 |
> |
ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; |
190 |
|
|
191 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
191 |
> |
rotAlgo->rotate(integrableObject, ji, dt); |
192 |
|
|
193 |
< |
integrableObject->setJ(ji); |
194 |
< |
} |
193 |
> |
integrableObject->setJ(ji); |
194 |
> |
} |
195 |
|
|
196 |
< |
} |
196 |
> |
} |
197 |
|
} |
198 |
|
// evolve chi and eta half step |
199 |
|
|
206 |
|
|
207 |
|
index = 0; |
208 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
209 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
210 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
211 |
< |
oldPos[index++] = integrableObject->getPos(); |
212 |
< |
} |
209 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
210 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
211 |
> |
oldPos[index++] = integrableObject->getPos(); |
212 |
> |
} |
213 |
|
} |
214 |
|
|
215 |
|
//the first estimation of r(t+dt) is equal to r(t) |
216 |
|
|
217 |
|
for(int k = 0; k < maxIterNum_; k++) { |
218 |
< |
index = 0; |
219 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
220 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
221 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
218 |
> |
index = 0; |
219 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
220 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
221 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
222 |
|
|
223 |
< |
vel = integrableObject->getVel(); |
224 |
< |
pos = integrableObject->getPos(); |
223 |
> |
vel = integrableObject->getVel(); |
224 |
> |
pos = integrableObject->getPos(); |
225 |
|
|
226 |
< |
this->getPosScale(pos, COM, index, sc); |
226 |
> |
this->getPosScale(pos, COM, index, sc); |
227 |
|
|
228 |
< |
pos = oldPos[index] + dt * (vel + sc); |
229 |
< |
integrableObject->setPos(pos); |
228 |
> |
pos = oldPos[index] + dt * (vel + sc); |
229 |
> |
integrableObject->setPos(pos); |
230 |
|
|
231 |
< |
++index; |
232 |
< |
} |
233 |
< |
} |
231 |
> |
++index; |
232 |
> |
} |
233 |
> |
} |
234 |
|
|
235 |
< |
rattle->constraintA(); |
235 |
> |
rattle->constraintA(); |
236 |
|
} |
237 |
|
|
238 |
|
// Scale the box after all the positions have been moved: |
243 |
|
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
244 |
|
|
245 |
|
saveEta(); |
246 |
< |
} |
246 |
> |
} |
247 |
|
|
248 |
< |
void NPT::moveB(void) { |
248 |
> |
void NPT::moveB(void) { |
249 |
|
SimInfo::MoleculeIterator i; |
250 |
|
Molecule::IntegrableObjectIterator j; |
251 |
|
Molecule* mol; |
256 |
|
Vector3d sc; |
257 |
|
Vector3d vel; |
258 |
|
Vector3d frc; |
259 |
< |
double mass; |
259 |
> |
RealType mass; |
260 |
|
|
261 |
|
|
262 |
|
chi= currentSnapshot_->getChi(); |
263 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
264 |
< |
double oldChi = chi; |
265 |
< |
double prevChi; |
264 |
> |
RealType oldChi = chi; |
265 |
> |
RealType prevChi; |
266 |
|
|
267 |
|
loadEta(); |
268 |
|
|
269 |
|
//save velocity and angular momentum |
270 |
|
index = 0; |
271 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
272 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
273 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
272 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
273 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
274 |
|
|
275 |
< |
oldVel[index] = integrableObject->getVel(); |
276 |
< |
oldJi[index] = integrableObject->getJ(); |
277 |
< |
++index; |
278 |
< |
} |
275 |
> |
oldVel[index] = integrableObject->getVel(); |
276 |
> |
oldJi[index] = integrableObject->getJ(); |
277 |
> |
++index; |
278 |
> |
} |
279 |
|
} |
280 |
|
|
281 |
|
// do the iteration: |
282 |
|
instaVol =thermo.getVolume(); |
283 |
|
|
284 |
|
for(int k = 0; k < maxIterNum_; k++) { |
285 |
< |
instaTemp =thermo.getTemperature(); |
286 |
< |
instaPress =thermo.getPressure(); |
285 |
> |
instaTemp =thermo.getTemperature(); |
286 |
> |
instaPress =thermo.getPressure(); |
287 |
|
|
288 |
< |
// evolve chi another half step using the temperature at t + dt/2 |
289 |
< |
prevChi = chi; |
290 |
< |
chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
288 |
> |
// evolve chi another half step using the temperature at t + dt/2 |
289 |
> |
prevChi = chi; |
290 |
> |
chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
291 |
|
|
292 |
< |
//evolve eta |
293 |
< |
this->evolveEtaB(); |
294 |
< |
this->calcVelScale(); |
292 |
> |
//evolve eta |
293 |
> |
this->evolveEtaB(); |
294 |
> |
this->calcVelScale(); |
295 |
|
|
296 |
< |
index = 0; |
297 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
298 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
299 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
296 |
> |
index = 0; |
297 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
298 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
299 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
300 |
|
|
301 |
< |
frc = integrableObject->getFrc(); |
302 |
< |
vel = integrableObject->getVel(); |
301 |
> |
frc = integrableObject->getFrc(); |
302 |
> |
vel = integrableObject->getVel(); |
303 |
|
|
304 |
< |
mass = integrableObject->getMass(); |
304 |
> |
mass = integrableObject->getMass(); |
305 |
|
|
306 |
< |
getVelScaleB(sc, index); |
306 |
> |
getVelScaleB(sc, index); |
307 |
|
|
308 |
< |
// velocity half step |
309 |
< |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
310 |
< |
vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
311 |
< |
integrableObject->setVel(vel); |
308 |
> |
// velocity half step |
309 |
> |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
310 |
> |
vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
311 |
> |
integrableObject->setVel(vel); |
312 |
|
|
313 |
< |
if (integrableObject->isDirectional()) { |
314 |
< |
// get and convert the torque to body frame |
315 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
313 |
> |
if (integrableObject->isDirectional()) { |
314 |
> |
// get and convert the torque to body frame |
315 |
> |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
316 |
|
|
317 |
< |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); |
318 |
< |
ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; |
319 |
< |
integrableObject->setJ(ji); |
320 |
< |
} |
317 |
> |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); |
318 |
> |
ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; |
319 |
> |
integrableObject->setJ(ji); |
320 |
> |
} |
321 |
|
|
322 |
< |
++index; |
323 |
< |
} |
324 |
< |
} |
322 |
> |
++index; |
323 |
> |
} |
324 |
> |
} |
325 |
|
|
326 |
< |
rattle->constraintB(); |
326 |
> |
rattle->constraintB(); |
327 |
|
|
328 |
< |
if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) |
329 |
< |
break; |
328 |
> |
if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) |
329 |
> |
break; |
330 |
|
} |
331 |
|
|
332 |
|
//calculate integral of chidt |
336 |
|
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
337 |
|
|
338 |
|
saveEta(); |
339 |
< |
} |
339 |
> |
} |
340 |
|
|
341 |
+ |
void NPT::resetIntegrator(){ |
342 |
+ |
currentSnapshot_->setChi(0.0); |
343 |
+ |
currentSnapshot_->setIntegralOfChiDt(0.0); |
344 |
+ |
resetEta(); |
345 |
+ |
} |
346 |
+ |
|
347 |
+ |
|
348 |
+ |
void NPT::resetEta() { |
349 |
+ |
Mat3x3d etaMat(0.0); |
350 |
+ |
currentSnapshot_->setEta(etaMat); |
351 |
+ |
} |
352 |
+ |
|
353 |
|
} |