1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include <math.h> |
44 |
|
45 |
#include "brains/SimInfo.hpp" |
46 |
#include "brains/Thermo.hpp" |
47 |
#include "integrators/NPT.hpp" |
48 |
#include "math/SquareMatrix3.hpp" |
49 |
#include "primitives/Molecule.hpp" |
50 |
#include "utils/PhysicalConstants.hpp" |
51 |
#include "utils/simError.h" |
52 |
|
53 |
// Basic isotropic thermostating and barostating via the Melchionna |
54 |
// modification of the Hoover algorithm: |
55 |
// |
56 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
57 |
// Molec. Phys., 78, 533. |
58 |
// |
59 |
// and |
60 |
// |
61 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
62 |
|
63 |
namespace OpenMD { |
64 |
|
65 |
NPT::NPT(SimInfo* info) : |
66 |
VelocityVerletIntegrator(info), etaTolerance(1e-6), chiTolerance(1e-6), |
67 |
maxIterNum_(4) { |
68 |
|
69 |
Globals* simParams = info_->getSimParams(); |
70 |
|
71 |
if (!simParams->getUseIntialExtendedSystemState()) { |
72 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
73 |
currSnapshot->setThermostat(make_pair(0.0, 0.0)); |
74 |
currSnapshot->setBarostat(Mat3x3d(0.0)); |
75 |
} |
76 |
|
77 |
if (!simParams->haveTargetTemp()) { |
78 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); |
79 |
painCave.isFatal = 1; |
80 |
painCave.severity = OPENMD_ERROR; |
81 |
simError(); |
82 |
} else { |
83 |
targetTemp = simParams->getTargetTemp(); |
84 |
} |
85 |
|
86 |
// We must set tauThermostat |
87 |
if (!simParams->haveTauThermostat()) { |
88 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
89 |
"\tintegrator, you must set tauThermostat.\n"); |
90 |
|
91 |
painCave.severity = OPENMD_ERROR; |
92 |
painCave.isFatal = 1; |
93 |
simError(); |
94 |
} else { |
95 |
tauThermostat = simParams->getTauThermostat(); |
96 |
} |
97 |
|
98 |
if (!simParams->haveTargetPressure()) { |
99 |
sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" |
100 |
" without a targetPressure!\n"); |
101 |
|
102 |
painCave.isFatal = 1; |
103 |
simError(); |
104 |
} else { |
105 |
targetPressure = simParams->getTargetPressure(); |
106 |
} |
107 |
|
108 |
if (!simParams->haveTauBarostat()) { |
109 |
sprintf(painCave.errMsg, |
110 |
"If you use the NPT integrator, you must set tauBarostat.\n"); |
111 |
painCave.severity = OPENMD_ERROR; |
112 |
painCave.isFatal = 1; |
113 |
simError(); |
114 |
} else { |
115 |
tauBarostat = simParams->getTauBarostat(); |
116 |
} |
117 |
|
118 |
tt2 = tauThermostat * tauThermostat; |
119 |
tb2 = tauBarostat * tauBarostat; |
120 |
|
121 |
updateSizes(); |
122 |
} |
123 |
|
124 |
NPT::~NPT() { |
125 |
} |
126 |
|
127 |
void NPT::doUpdateSizes() { |
128 |
|
129 |
oldPos.resize(info_->getNIntegrableObjects()); |
130 |
oldVel.resize(info_->getNIntegrableObjects()); |
131 |
oldJi.resize(info_->getNIntegrableObjects()); |
132 |
|
133 |
} |
134 |
|
135 |
void NPT::moveA() { |
136 |
SimInfo::MoleculeIterator i; |
137 |
Molecule::IntegrableObjectIterator j; |
138 |
Molecule* mol; |
139 |
StuntDouble* sd; |
140 |
Vector3d Tb, ji; |
141 |
RealType mass; |
142 |
Vector3d vel; |
143 |
Vector3d pos; |
144 |
Vector3d frc; |
145 |
Vector3d sc; |
146 |
int index; |
147 |
|
148 |
thermostat = snap->getThermostat(); |
149 |
loadEta(); |
150 |
|
151 |
instaTemp =thermo.getTemperature(); |
152 |
press = thermo.getPressureTensor(); |
153 |
instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
154 |
instaVol =thermo.getVolume(); |
155 |
|
156 |
Vector3d COM = thermo.getCom(); |
157 |
|
158 |
//evolve velocity half step |
159 |
|
160 |
calcVelScale(); |
161 |
|
162 |
for (mol = info_->beginMolecule(i); mol != NULL; |
163 |
mol = info_->nextMolecule(i)) { |
164 |
|
165 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
166 |
sd = mol->nextIntegrableObject(j)) { |
167 |
|
168 |
vel = sd->getVel(); |
169 |
frc = sd->getFrc(); |
170 |
|
171 |
mass = sd->getMass(); |
172 |
|
173 |
getVelScaleA(sc, vel); |
174 |
|
175 |
// velocity half step (use chi from previous step here): |
176 |
|
177 |
vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
178 |
sd->setVel(vel); |
179 |
|
180 |
if (sd->isDirectional()) { |
181 |
|
182 |
// get and convert the torque to body frame |
183 |
|
184 |
Tb = sd->lab2Body(sd->getTrq()); |
185 |
|
186 |
// get the angular momentum, and propagate a half step |
187 |
|
188 |
ji = sd->getJ(); |
189 |
|
190 |
ji += dt2*PhysicalConstants::energyConvert * Tb |
191 |
- dt2*thermostat.first* ji; |
192 |
|
193 |
rotAlgo_->rotate(sd, ji, dt); |
194 |
|
195 |
sd->setJ(ji); |
196 |
} |
197 |
|
198 |
} |
199 |
} |
200 |
// evolve chi and eta half step |
201 |
|
202 |
thermostat.first += dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
203 |
|
204 |
evolveEtaA(); |
205 |
|
206 |
//calculate the integral of chidt |
207 |
thermostat.second += dt2 * thermostat.first; |
208 |
|
209 |
flucQ_->moveA(); |
210 |
|
211 |
|
212 |
index = 0; |
213 |
for (mol = info_->beginMolecule(i); mol != NULL; |
214 |
mol = info_->nextMolecule(i)) { |
215 |
|
216 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
217 |
sd = mol->nextIntegrableObject(j)) { |
218 |
|
219 |
oldPos[index++] = sd->getPos(); |
220 |
|
221 |
} |
222 |
} |
223 |
|
224 |
//the first estimation of r(t+dt) is equal to r(t) |
225 |
|
226 |
for(int k = 0; k < maxIterNum_; k++) { |
227 |
index = 0; |
228 |
for (mol = info_->beginMolecule(i); mol != NULL; |
229 |
mol = info_->nextMolecule(i)) { |
230 |
|
231 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
232 |
sd = mol->nextIntegrableObject(j)) { |
233 |
|
234 |
vel = sd->getVel(); |
235 |
pos = sd->getPos(); |
236 |
|
237 |
this->getPosScale(pos, COM, index, sc); |
238 |
|
239 |
pos = oldPos[index] + dt * (vel + sc); |
240 |
sd->setPos(pos); |
241 |
|
242 |
++index; |
243 |
} |
244 |
} |
245 |
|
246 |
rattle_->constraintA(); |
247 |
} |
248 |
|
249 |
// Scale the box after all the positions have been moved: |
250 |
|
251 |
this->scaleSimBox(); |
252 |
|
253 |
snap->setThermostat(thermostat); |
254 |
|
255 |
saveEta(); |
256 |
} |
257 |
|
258 |
void NPT::moveB(void) { |
259 |
SimInfo::MoleculeIterator i; |
260 |
Molecule::IntegrableObjectIterator j; |
261 |
Molecule* mol; |
262 |
StuntDouble* sd; |
263 |
int index; |
264 |
Vector3d Tb; |
265 |
Vector3d ji; |
266 |
Vector3d sc; |
267 |
Vector3d vel; |
268 |
Vector3d frc; |
269 |
RealType mass; |
270 |
|
271 |
thermostat = snap->getThermostat(); |
272 |
RealType oldChi = thermostat.first; |
273 |
RealType prevChi; |
274 |
|
275 |
loadEta(); |
276 |
|
277 |
//save velocity and angular momentum |
278 |
index = 0; |
279 |
for (mol = info_->beginMolecule(i); mol != NULL; |
280 |
mol = info_->nextMolecule(i)) { |
281 |
|
282 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
283 |
sd = mol->nextIntegrableObject(j)) { |
284 |
|
285 |
oldVel[index] = sd->getVel(); |
286 |
|
287 |
if (sd->isDirectional()) |
288 |
oldJi[index] = sd->getJ(); |
289 |
|
290 |
++index; |
291 |
} |
292 |
} |
293 |
|
294 |
// do the iteration: |
295 |
instaVol =thermo.getVolume(); |
296 |
|
297 |
for(int k = 0; k < maxIterNum_; k++) { |
298 |
instaTemp =thermo.getTemperature(); |
299 |
instaPress =thermo.getPressure(); |
300 |
|
301 |
// evolve chi another half step using the temperature at t + dt/2 |
302 |
prevChi = thermostat.first; |
303 |
thermostat.first = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
304 |
|
305 |
//evolve eta |
306 |
this->evolveEtaB(); |
307 |
this->calcVelScale(); |
308 |
|
309 |
index = 0; |
310 |
for (mol = info_->beginMolecule(i); mol != NULL; |
311 |
mol = info_->nextMolecule(i)) { |
312 |
|
313 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
314 |
sd = mol->nextIntegrableObject(j)) { |
315 |
|
316 |
frc = sd->getFrc(); |
317 |
mass = sd->getMass(); |
318 |
|
319 |
getVelScaleB(sc, index); |
320 |
|
321 |
// velocity half step |
322 |
vel = oldVel[index] |
323 |
+ dt2*PhysicalConstants::energyConvert/mass* frc |
324 |
- dt2*sc; |
325 |
|
326 |
sd->setVel(vel); |
327 |
|
328 |
if (sd->isDirectional()) { |
329 |
// get and convert the torque to body frame |
330 |
Tb = sd->lab2Body(sd->getTrq()); |
331 |
|
332 |
ji = oldJi[index] |
333 |
+ dt2*PhysicalConstants::energyConvert*Tb |
334 |
- dt2*thermostat.first*oldJi[index]; |
335 |
|
336 |
sd->setJ(ji); |
337 |
} |
338 |
|
339 |
++index; |
340 |
} |
341 |
} |
342 |
|
343 |
rattle_->constraintB(); |
344 |
|
345 |
if ((fabs(prevChi - thermostat.first) <= chiTolerance) && |
346 |
this->etaConverged()) |
347 |
break; |
348 |
} |
349 |
|
350 |
//calculate integral of chidt |
351 |
thermostat.second += dt2 * thermostat.first; |
352 |
|
353 |
snap->setThermostat(thermostat); |
354 |
|
355 |
flucQ_->moveB(); |
356 |
saveEta(); |
357 |
} |
358 |
|
359 |
void NPT::resetIntegrator(){ |
360 |
snap->setThermostat(make_pair(0.0, 0.0)); |
361 |
resetEta(); |
362 |
} |
363 |
|
364 |
void NPT::resetEta() { |
365 |
Mat3x3d etaMat(0.0); |
366 |
snap->setBarostat(etaMat); |
367 |
} |
368 |
} |