ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/NPT.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 1 month ago) by gezelter
File size: 9956 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include <math.h>
44
45 #include "brains/SimInfo.hpp"
46 #include "brains/Thermo.hpp"
47 #include "integrators/NPT.hpp"
48 #include "math/SquareMatrix3.hpp"
49 #include "primitives/Molecule.hpp"
50 #include "utils/PhysicalConstants.hpp"
51 #include "utils/simError.h"
52
53 // Basic isotropic thermostating and barostating via the Melchionna
54 // modification of the Hoover algorithm:
55 //
56 // Melchionna, S., Ciccotti, G., and Holian, B. L., 1993,
57 // Molec. Phys., 78, 533.
58 //
59 // and
60 //
61 // Hoover, W. G., 1986, Phys. Rev. A, 34, 2499.
62
63 namespace OpenMD {
64
65 NPT::NPT(SimInfo* info) :
66 VelocityVerletIntegrator(info), etaTolerance(1e-6), chiTolerance(1e-6),
67 maxIterNum_(4) {
68
69 Globals* simParams = info_->getSimParams();
70
71 if (!simParams->getUseIntialExtendedSystemState()) {
72 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
73 currSnapshot->setThermostat(make_pair(0.0, 0.0));
74 currSnapshot->setBarostat(Mat3x3d(0.0));
75 }
76
77 if (!simParams->haveTargetTemp()) {
78 sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n");
79 painCave.isFatal = 1;
80 painCave.severity = OPENMD_ERROR;
81 simError();
82 } else {
83 targetTemp = simParams->getTargetTemp();
84 }
85
86 // We must set tauThermostat
87 if (!simParams->haveTauThermostat()) {
88 sprintf(painCave.errMsg, "If you use the constant temperature\n"
89 "\tintegrator, you must set tauThermostat.\n");
90
91 painCave.severity = OPENMD_ERROR;
92 painCave.isFatal = 1;
93 simError();
94 } else {
95 tauThermostat = simParams->getTauThermostat();
96 }
97
98 if (!simParams->haveTargetPressure()) {
99 sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n"
100 " without a targetPressure!\n");
101
102 painCave.isFatal = 1;
103 simError();
104 } else {
105 targetPressure = simParams->getTargetPressure();
106 }
107
108 if (!simParams->haveTauBarostat()) {
109 sprintf(painCave.errMsg,
110 "If you use the NPT integrator, you must set tauBarostat.\n");
111 painCave.severity = OPENMD_ERROR;
112 painCave.isFatal = 1;
113 simError();
114 } else {
115 tauBarostat = simParams->getTauBarostat();
116 }
117
118 tt2 = tauThermostat * tauThermostat;
119 tb2 = tauBarostat * tauBarostat;
120
121 updateSizes();
122 }
123
124 NPT::~NPT() {
125 }
126
127 void NPT::doUpdateSizes() {
128
129 oldPos.resize(info_->getNIntegrableObjects());
130 oldVel.resize(info_->getNIntegrableObjects());
131 oldJi.resize(info_->getNIntegrableObjects());
132
133 }
134
135 void NPT::moveA() {
136 SimInfo::MoleculeIterator i;
137 Molecule::IntegrableObjectIterator j;
138 Molecule* mol;
139 StuntDouble* sd;
140 Vector3d Tb, ji;
141 RealType mass;
142 Vector3d vel;
143 Vector3d pos;
144 Vector3d frc;
145 Vector3d sc;
146 int index;
147
148 thermostat = snap->getThermostat();
149 loadEta();
150
151 instaTemp =thermo.getTemperature();
152 press = thermo.getPressureTensor();
153 instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0;
154 instaVol =thermo.getVolume();
155
156 Vector3d COM = thermo.getCom();
157
158 //evolve velocity half step
159
160 calcVelScale();
161
162 for (mol = info_->beginMolecule(i); mol != NULL;
163 mol = info_->nextMolecule(i)) {
164
165 for (sd = mol->beginIntegrableObject(j); sd != NULL;
166 sd = mol->nextIntegrableObject(j)) {
167
168 vel = sd->getVel();
169 frc = sd->getFrc();
170
171 mass = sd->getMass();
172
173 getVelScaleA(sc, vel);
174
175 // velocity half step (use chi from previous step here):
176
177 vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc;
178 sd->setVel(vel);
179
180 if (sd->isDirectional()) {
181
182 // get and convert the torque to body frame
183
184 Tb = sd->lab2Body(sd->getTrq());
185
186 // get the angular momentum, and propagate a half step
187
188 ji = sd->getJ();
189
190 ji += dt2*PhysicalConstants::energyConvert * Tb
191 - dt2*thermostat.first* ji;
192
193 rotAlgo_->rotate(sd, ji, dt);
194
195 sd->setJ(ji);
196 }
197
198 }
199 }
200 // evolve chi and eta half step
201
202 thermostat.first += dt2 * (instaTemp / targetTemp - 1.0) / tt2;
203
204 evolveEtaA();
205
206 //calculate the integral of chidt
207 thermostat.second += dt2 * thermostat.first;
208
209 flucQ_->moveA();
210
211
212 index = 0;
213 for (mol = info_->beginMolecule(i); mol != NULL;
214 mol = info_->nextMolecule(i)) {
215
216 for (sd = mol->beginIntegrableObject(j); sd != NULL;
217 sd = mol->nextIntegrableObject(j)) {
218
219 oldPos[index++] = sd->getPos();
220
221 }
222 }
223
224 //the first estimation of r(t+dt) is equal to r(t)
225
226 for(int k = 0; k < maxIterNum_; k++) {
227 index = 0;
228 for (mol = info_->beginMolecule(i); mol != NULL;
229 mol = info_->nextMolecule(i)) {
230
231 for (sd = mol->beginIntegrableObject(j); sd != NULL;
232 sd = mol->nextIntegrableObject(j)) {
233
234 vel = sd->getVel();
235 pos = sd->getPos();
236
237 this->getPosScale(pos, COM, index, sc);
238
239 pos = oldPos[index] + dt * (vel + sc);
240 sd->setPos(pos);
241
242 ++index;
243 }
244 }
245
246 rattle_->constraintA();
247 }
248
249 // Scale the box after all the positions have been moved:
250
251 this->scaleSimBox();
252
253 snap->setThermostat(thermostat);
254
255 saveEta();
256 }
257
258 void NPT::moveB(void) {
259 SimInfo::MoleculeIterator i;
260 Molecule::IntegrableObjectIterator j;
261 Molecule* mol;
262 StuntDouble* sd;
263 int index;
264 Vector3d Tb;
265 Vector3d ji;
266 Vector3d sc;
267 Vector3d vel;
268 Vector3d frc;
269 RealType mass;
270
271 thermostat = snap->getThermostat();
272 RealType oldChi = thermostat.first;
273 RealType prevChi;
274
275 loadEta();
276
277 //save velocity and angular momentum
278 index = 0;
279 for (mol = info_->beginMolecule(i); mol != NULL;
280 mol = info_->nextMolecule(i)) {
281
282 for (sd = mol->beginIntegrableObject(j); sd != NULL;
283 sd = mol->nextIntegrableObject(j)) {
284
285 oldVel[index] = sd->getVel();
286
287 if (sd->isDirectional())
288 oldJi[index] = sd->getJ();
289
290 ++index;
291 }
292 }
293
294 // do the iteration:
295 instaVol =thermo.getVolume();
296
297 for(int k = 0; k < maxIterNum_; k++) {
298 instaTemp =thermo.getTemperature();
299 instaPress =thermo.getPressure();
300
301 // evolve chi another half step using the temperature at t + dt/2
302 prevChi = thermostat.first;
303 thermostat.first = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2;
304
305 //evolve eta
306 this->evolveEtaB();
307 this->calcVelScale();
308
309 index = 0;
310 for (mol = info_->beginMolecule(i); mol != NULL;
311 mol = info_->nextMolecule(i)) {
312
313 for (sd = mol->beginIntegrableObject(j); sd != NULL;
314 sd = mol->nextIntegrableObject(j)) {
315
316 frc = sd->getFrc();
317 mass = sd->getMass();
318
319 getVelScaleB(sc, index);
320
321 // velocity half step
322 vel = oldVel[index]
323 + dt2*PhysicalConstants::energyConvert/mass* frc
324 - dt2*sc;
325
326 sd->setVel(vel);
327
328 if (sd->isDirectional()) {
329 // get and convert the torque to body frame
330 Tb = sd->lab2Body(sd->getTrq());
331
332 ji = oldJi[index]
333 + dt2*PhysicalConstants::energyConvert*Tb
334 - dt2*thermostat.first*oldJi[index];
335
336 sd->setJ(ji);
337 }
338
339 ++index;
340 }
341 }
342
343 rattle_->constraintB();
344
345 if ((fabs(prevChi - thermostat.first) <= chiTolerance) &&
346 this->etaConverged())
347 break;
348 }
349
350 //calculate integral of chidt
351 thermostat.second += dt2 * thermostat.first;
352
353 snap->setThermostat(thermostat);
354
355 flucQ_->moveB();
356 saveEta();
357 }
358
359 void NPT::resetIntegrator(){
360 snap->setThermostat(make_pair(0.0, 0.0));
361 resetEta();
362 }
363
364 void NPT::resetEta() {
365 Mat3x3d etaMat(0.0);
366 snap->setBarostat(etaMat);
367 }
368 }

Properties

Name Value
svn:keywords Author Id Revision Date