6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <math.h> |
47 |
|
#include "integrators/NPT.hpp" |
48 |
|
#include "math/SquareMatrix3.hpp" |
49 |
|
#include "primitives/Molecule.hpp" |
50 |
< |
#include "utils/OOPSEConstant.hpp" |
50 |
> |
#include "utils/PhysicalConstants.hpp" |
51 |
|
#include "utils/simError.h" |
52 |
|
|
53 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
60 |
|
// |
61 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
62 |
|
|
63 |
< |
namespace oopse { |
63 |
> |
namespace OpenMD { |
64 |
|
|
65 |
|
NPT::NPT(SimInfo* info) : |
66 |
|
VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { |
69 |
|
|
70 |
|
if (!simParams->getUseIntialExtendedSystemState()) { |
71 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
72 |
< |
currSnapshot->setChi(0.0); |
73 |
< |
currSnapshot->setIntegralOfChiDt(0.0); |
73 |
< |
currSnapshot->setEta(Mat3x3d(0.0)); |
72 |
> |
currSnapshot->setThermostat(make_pair(0.0, 0.0)); |
73 |
> |
currSnapshot->setBarostat(Mat3x3d(0.0)); |
74 |
|
} |
75 |
|
|
76 |
|
if (!simParams->haveTargetTemp()) { |
77 |
|
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); |
78 |
|
painCave.isFatal = 1; |
79 |
< |
painCave.severity = OOPSE_ERROR; |
79 |
> |
painCave.severity = OPENMD_ERROR; |
80 |
|
simError(); |
81 |
|
} else { |
82 |
|
targetTemp = simParams->getTargetTemp(); |
85 |
|
// We must set tauThermostat |
86 |
|
if (!simParams->haveTauThermostat()) { |
87 |
|
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
88 |
< |
"\tintegrator, you must set tauThermostat_.\n"); |
88 |
> |
"\tintegrator, you must set tauThermostat.\n"); |
89 |
|
|
90 |
< |
painCave.severity = OOPSE_ERROR; |
90 |
> |
painCave.severity = OPENMD_ERROR; |
91 |
|
painCave.isFatal = 1; |
92 |
|
simError(); |
93 |
|
} else { |
107 |
|
if (!simParams->haveTauBarostat()) { |
108 |
|
sprintf(painCave.errMsg, |
109 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
110 |
< |
painCave.severity = OOPSE_ERROR; |
110 |
> |
painCave.severity = OPENMD_ERROR; |
111 |
|
painCave.isFatal = 1; |
112 |
|
simError(); |
113 |
|
} else { |
117 |
|
tt2 = tauThermostat * tauThermostat; |
118 |
|
tb2 = tauBarostat * tauBarostat; |
119 |
|
|
120 |
< |
update(); |
120 |
> |
updateSizes(); |
121 |
|
} |
122 |
|
|
123 |
|
NPT::~NPT() { |
124 |
|
} |
125 |
|
|
126 |
< |
void NPT::doUpdate() { |
126 |
> |
void NPT::doUpdateSizes() { |
127 |
|
|
128 |
|
oldPos.resize(info_->getNIntegrableObjects()); |
129 |
|
oldVel.resize(info_->getNIntegrableObjects()); |
135 |
|
SimInfo::MoleculeIterator i; |
136 |
|
Molecule::IntegrableObjectIterator j; |
137 |
|
Molecule* mol; |
138 |
< |
StuntDouble* integrableObject; |
138 |
> |
StuntDouble* sd; |
139 |
|
Vector3d Tb, ji; |
140 |
|
RealType mass; |
141 |
|
Vector3d vel; |
144 |
|
Vector3d sc; |
145 |
|
int index; |
146 |
|
|
147 |
< |
chi= currentSnapshot_->getChi(); |
148 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
147 |
> |
thermostat = snap->getThermostat(); |
148 |
|
loadEta(); |
149 |
|
|
150 |
|
instaTemp =thermo.getTemperature(); |
151 |
|
press = thermo.getPressureTensor(); |
152 |
< |
instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
152 |
> |
instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
153 |
|
instaVol =thermo.getVolume(); |
154 |
|
|
155 |
< |
Vector3d COM = info_->getCom(); |
155 |
> |
Vector3d COM = thermo.getCom(); |
156 |
|
|
157 |
|
//evolve velocity half step |
158 |
|
|
159 |
|
calcVelScale(); |
160 |
|
|
161 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
162 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
163 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
161 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
162 |
> |
mol = info_->nextMolecule(i)) { |
163 |
> |
|
164 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
165 |
> |
sd = mol->nextIntegrableObject(j)) { |
166 |
|
|
167 |
< |
vel = integrableObject->getVel(); |
168 |
< |
frc = integrableObject->getFrc(); |
167 |
> |
vel = sd->getVel(); |
168 |
> |
frc = sd->getFrc(); |
169 |
|
|
170 |
< |
mass = integrableObject->getMass(); |
170 |
> |
mass = sd->getMass(); |
171 |
|
|
172 |
|
getVelScaleA(sc, vel); |
173 |
|
|
174 |
|
// velocity half step (use chi from previous step here): |
174 |
– |
//vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
175 |
– |
vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
176 |
– |
integrableObject->setVel(vel); |
175 |
|
|
176 |
< |
if (integrableObject->isDirectional()) { |
176 |
> |
vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
177 |
> |
sd->setVel(vel); |
178 |
|
|
179 |
+ |
if (sd->isDirectional()) { |
180 |
+ |
|
181 |
|
// get and convert the torque to body frame |
182 |
|
|
183 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
183 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
184 |
|
|
185 |
|
// get the angular momentum, and propagate a half step |
186 |
|
|
187 |
< |
ji = integrableObject->getJ(); |
187 |
> |
ji = sd->getJ(); |
188 |
|
|
189 |
< |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
190 |
< |
ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; |
189 |
> |
ji += dt2*PhysicalConstants::energyConvert * Tb |
190 |
> |
- dt2*thermostat.first* ji; |
191 |
|
|
192 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
192 |
> |
rotAlgo_->rotate(sd, ji, dt); |
193 |
|
|
194 |
< |
integrableObject->setJ(ji); |
194 |
> |
sd->setJ(ji); |
195 |
|
} |
196 |
|
|
197 |
|
} |
198 |
|
} |
199 |
|
// evolve chi and eta half step |
200 |
|
|
201 |
< |
chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
201 |
> |
thermostat.first += dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
202 |
|
|
203 |
|
evolveEtaA(); |
204 |
|
|
205 |
|
//calculate the integral of chidt |
206 |
< |
integralOfChidt += dt2 * chi; |
206 |
> |
thermostat.second += dt2 * thermostat.first; |
207 |
|
|
208 |
+ |
flucQ_->moveA(); |
209 |
+ |
|
210 |
+ |
|
211 |
|
index = 0; |
212 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
213 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
214 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
215 |
< |
oldPos[index++] = integrableObject->getPos(); |
212 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
213 |
> |
mol = info_->nextMolecule(i)) { |
214 |
> |
|
215 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
216 |
> |
sd = mol->nextIntegrableObject(j)) { |
217 |
> |
|
218 |
> |
oldPos[index++] = sd->getPos(); |
219 |
> |
|
220 |
|
} |
221 |
|
} |
222 |
|
|
224 |
|
|
225 |
|
for(int k = 0; k < maxIterNum_; k++) { |
226 |
|
index = 0; |
227 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
228 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
221 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
227 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
228 |
> |
mol = info_->nextMolecule(i)) { |
229 |
|
|
230 |
< |
vel = integrableObject->getVel(); |
231 |
< |
pos = integrableObject->getPos(); |
230 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
231 |
> |
sd = mol->nextIntegrableObject(j)) { |
232 |
> |
|
233 |
> |
vel = sd->getVel(); |
234 |
> |
pos = sd->getPos(); |
235 |
|
|
236 |
|
this->getPosScale(pos, COM, index, sc); |
237 |
|
|
238 |
|
pos = oldPos[index] + dt * (vel + sc); |
239 |
< |
integrableObject->setPos(pos); |
239 |
> |
sd->setPos(pos); |
240 |
|
|
241 |
|
++index; |
242 |
|
} |
243 |
|
} |
244 |
|
|
245 |
< |
rattle->constraintA(); |
245 |
> |
rattle_->constraintA(); |
246 |
|
} |
247 |
|
|
248 |
|
// Scale the box after all the positions have been moved: |
249 |
|
|
250 |
|
this->scaleSimBox(); |
251 |
|
|
252 |
< |
currentSnapshot_->setChi(chi); |
243 |
< |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
252 |
> |
snap->setThermostat(thermostat); |
253 |
|
|
254 |
|
saveEta(); |
255 |
|
} |
258 |
|
SimInfo::MoleculeIterator i; |
259 |
|
Molecule::IntegrableObjectIterator j; |
260 |
|
Molecule* mol; |
261 |
< |
StuntDouble* integrableObject; |
261 |
> |
StuntDouble* sd; |
262 |
|
int index; |
263 |
|
Vector3d Tb; |
264 |
|
Vector3d ji; |
267 |
|
Vector3d frc; |
268 |
|
RealType mass; |
269 |
|
|
270 |
< |
|
271 |
< |
chi= currentSnapshot_->getChi(); |
263 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
264 |
< |
RealType oldChi = chi; |
270 |
> |
thermostat = snap->getThermostat(); |
271 |
> |
RealType oldChi = thermostat.first; |
272 |
|
RealType prevChi; |
273 |
|
|
274 |
|
loadEta(); |
275 |
|
|
276 |
|
//save velocity and angular momentum |
277 |
|
index = 0; |
278 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
279 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
280 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
278 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
279 |
> |
mol = info_->nextMolecule(i)) { |
280 |
> |
|
281 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
282 |
> |
sd = mol->nextIntegrableObject(j)) { |
283 |
|
|
284 |
< |
oldVel[index] = integrableObject->getVel(); |
285 |
< |
oldJi[index] = integrableObject->getJ(); |
284 |
> |
oldVel[index] = sd->getVel(); |
285 |
> |
|
286 |
> |
if (sd->isDirectional()) |
287 |
> |
oldJi[index] = sd->getJ(); |
288 |
> |
|
289 |
|
++index; |
290 |
|
} |
291 |
|
} |
298 |
|
instaPress =thermo.getPressure(); |
299 |
|
|
300 |
|
// evolve chi another half step using the temperature at t + dt/2 |
301 |
< |
prevChi = chi; |
302 |
< |
chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
301 |
> |
prevChi = thermostat.first; |
302 |
> |
thermostat.first = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
303 |
|
|
304 |
|
//evolve eta |
305 |
|
this->evolveEtaB(); |
306 |
|
this->calcVelScale(); |
307 |
|
|
308 |
|
index = 0; |
309 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
310 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
299 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
309 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
310 |
> |
mol = info_->nextMolecule(i)) { |
311 |
|
|
312 |
< |
frc = integrableObject->getFrc(); |
313 |
< |
vel = integrableObject->getVel(); |
312 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
313 |
> |
sd = mol->nextIntegrableObject(j)) { |
314 |
|
|
315 |
< |
mass = integrableObject->getMass(); |
315 |
> |
frc = sd->getFrc(); |
316 |
> |
mass = sd->getMass(); |
317 |
|
|
318 |
|
getVelScaleB(sc, index); |
319 |
|
|
320 |
|
// velocity half step |
321 |
< |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
322 |
< |
vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
323 |
< |
integrableObject->setVel(vel); |
321 |
> |
vel = oldVel[index] |
322 |
> |
+ dt2*PhysicalConstants::energyConvert/mass* frc |
323 |
> |
- dt2*sc; |
324 |
|
|
325 |
< |
if (integrableObject->isDirectional()) { |
325 |
> |
sd->setVel(vel); |
326 |
> |
|
327 |
> |
if (sd->isDirectional()) { |
328 |
|
// get and convert the torque to body frame |
329 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
329 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
330 |
|
|
331 |
< |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); |
332 |
< |
ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; |
333 |
< |
integrableObject->setJ(ji); |
331 |
> |
ji = oldJi[index] |
332 |
> |
+ dt2*PhysicalConstants::energyConvert*Tb |
333 |
> |
- dt2*thermostat.first*oldJi[index]; |
334 |
> |
|
335 |
> |
sd->setJ(ji); |
336 |
|
} |
337 |
|
|
338 |
|
++index; |
339 |
|
} |
340 |
|
} |
341 |
|
|
342 |
< |
rattle->constraintB(); |
342 |
> |
rattle_->constraintB(); |
343 |
|
|
344 |
< |
if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) |
344 |
> |
if ((fabs(prevChi - thermostat.first) <= chiTolerance) && |
345 |
> |
this->etaConverged()) |
346 |
|
break; |
347 |
|
} |
348 |
|
|
349 |
|
//calculate integral of chidt |
350 |
< |
integralOfChidt += dt2 * chi; |
350 |
> |
thermostat.second += dt2 * thermostat.first; |
351 |
|
|
352 |
< |
currentSnapshot_->setChi(chi); |
336 |
< |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
352 |
> |
snap->setThermostat(thermostat); |
353 |
|
|
354 |
+ |
flucQ_->moveB(); |
355 |
|
saveEta(); |
356 |
|
} |
357 |
|
|
358 |
|
void NPT::resetIntegrator(){ |
359 |
< |
currentSnapshot_->setChi(0.0); |
360 |
< |
currentSnapshot_->setIntegralOfChiDt(0.0); |
344 |
< |
resetEta(); |
359 |
> |
snap->setThermostat(make_pair(0.0, 0.0)); |
360 |
> |
resetEta(); |
361 |
|
} |
362 |
|
|
363 |
< |
|
364 |
< |
void NPT::resetEta() { |
365 |
< |
Mat3x3d etaMat(0.0); |
366 |
< |
currentSnapshot_->setEta(etaMat); |
351 |
< |
} |
352 |
< |
|
363 |
> |
void NPT::resetEta() { |
364 |
> |
Mat3x3d etaMat(0.0); |
365 |
> |
snap->setBarostat(etaMat); |
366 |
> |
} |
367 |
|
} |