6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
|
|
42 |
|
#include <math.h> |
46 |
|
#include "integrators/NPT.hpp" |
47 |
|
#include "math/SquareMatrix3.hpp" |
48 |
|
#include "primitives/Molecule.hpp" |
49 |
< |
#include "utils/OOPSEConstant.hpp" |
49 |
> |
#include "utils/PhysicalConstants.hpp" |
50 |
|
#include "utils/simError.h" |
51 |
|
|
52 |
|
// Basic isotropic thermostating and barostating via the Melchionna |
59 |
|
// |
60 |
|
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
61 |
|
|
62 |
< |
namespace oopse { |
62 |
> |
namespace OpenMD { |
63 |
|
|
64 |
|
NPT::NPT(SimInfo* info) : |
65 |
|
VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { |
76 |
|
if (!simParams->haveTargetTemp()) { |
77 |
|
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); |
78 |
|
painCave.isFatal = 1; |
79 |
< |
painCave.severity = OOPSE_ERROR; |
79 |
> |
painCave.severity = OPENMD_ERROR; |
80 |
|
simError(); |
81 |
|
} else { |
82 |
|
targetTemp = simParams->getTargetTemp(); |
85 |
|
// We must set tauThermostat |
86 |
|
if (!simParams->haveTauThermostat()) { |
87 |
|
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
88 |
< |
"\tintegrator, you must set tauThermostat_.\n"); |
88 |
> |
"\tintegrator, you must set tauThermostat.\n"); |
89 |
|
|
90 |
< |
painCave.severity = OOPSE_ERROR; |
90 |
> |
painCave.severity = OPENMD_ERROR; |
91 |
|
painCave.isFatal = 1; |
92 |
|
simError(); |
93 |
|
} else { |
107 |
|
if (!simParams->haveTauBarostat()) { |
108 |
|
sprintf(painCave.errMsg, |
109 |
|
"If you use the NPT integrator, you must set tauBarostat.\n"); |
110 |
< |
painCave.severity = OOPSE_ERROR; |
110 |
> |
painCave.severity = OPENMD_ERROR; |
111 |
|
painCave.isFatal = 1; |
112 |
|
simError(); |
113 |
|
} else { |
137 |
|
Molecule* mol; |
138 |
|
StuntDouble* integrableObject; |
139 |
|
Vector3d Tb, ji; |
140 |
< |
double mass; |
140 |
> |
RealType mass; |
141 |
|
Vector3d vel; |
142 |
|
Vector3d pos; |
143 |
|
Vector3d frc; |
150 |
|
|
151 |
|
instaTemp =thermo.getTemperature(); |
152 |
|
press = thermo.getPressureTensor(); |
153 |
< |
instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
153 |
> |
instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
154 |
|
instaVol =thermo.getVolume(); |
155 |
|
|
156 |
|
Vector3d COM = info_->getCom(); |
171 |
|
getVelScaleA(sc, vel); |
172 |
|
|
173 |
|
// velocity half step (use chi from previous step here): |
174 |
< |
//vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
175 |
< |
vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
174 |
> |
//vel[j] += dt2 * ((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); |
175 |
> |
vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
176 |
|
integrableObject->setVel(vel); |
177 |
|
|
178 |
|
if (integrableObject->isDirectional()) { |
185 |
|
|
186 |
|
ji = integrableObject->getJ(); |
187 |
|
|
188 |
< |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
189 |
< |
ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; |
188 |
> |
//ji[j] += dt2 * (Tb[j] * PhysicalConstants::energyConvert - ji[j]*chi); |
189 |
> |
ji += dt2*PhysicalConstants::energyConvert * Tb - dt2*chi* ji; |
190 |
|
|
191 |
|
rotAlgo->rotate(integrableObject, ji, dt); |
192 |
|
|
256 |
|
Vector3d sc; |
257 |
|
Vector3d vel; |
258 |
|
Vector3d frc; |
259 |
< |
double mass; |
259 |
> |
RealType mass; |
260 |
|
|
261 |
|
|
262 |
|
chi= currentSnapshot_->getChi(); |
263 |
|
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
264 |
< |
double oldChi = chi; |
265 |
< |
double prevChi; |
264 |
> |
RealType oldChi = chi; |
265 |
> |
RealType prevChi; |
266 |
|
|
267 |
|
loadEta(); |
268 |
|
|
306 |
|
getVelScaleB(sc, index); |
307 |
|
|
308 |
|
// velocity half step |
309 |
< |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
310 |
< |
vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
309 |
> |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * PhysicalConstants::energyConvert - sc[j]); |
310 |
> |
vel = oldVel[index] + dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
311 |
|
integrableObject->setVel(vel); |
312 |
|
|
313 |
|
if (integrableObject->isDirectional()) { |
314 |
|
// get and convert the torque to body frame |
315 |
|
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
316 |
|
|
317 |
< |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); |
318 |
< |
ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; |
317 |
> |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * PhysicalConstants::energyConvert - oldJi[3*i+j]*chi); |
318 |
> |
ji = oldJi[index] + dt2*PhysicalConstants::energyConvert*Tb - dt2*chi*oldJi[index]; |
319 |
|
integrableObject->setJ(ji); |
320 |
|
} |
321 |
|
|