1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Acknowledgement of the program authors must be made in any |
10 |
* publication of scientific results based in part on use of the |
11 |
* program. An acceptable form of acknowledgement is citation of |
12 |
* the article in which the program was described (Matthew |
13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
* |
18 |
* 2. Redistributions of source code must retain the above copyright |
19 |
* notice, this list of conditions and the following disclaimer. |
20 |
* |
21 |
* 3. Redistributions in binary form must reproduce the above copyright |
22 |
* notice, this list of conditions and the following disclaimer in the |
23 |
* documentation and/or other materials provided with the |
24 |
* distribution. |
25 |
* |
26 |
* This software is provided "AS IS," without a warranty of any |
27 |
* kind. All express or implied conditions, representations and |
28 |
* warranties, including any implied warranty of merchantability, |
29 |
* fitness for a particular purpose or non-infringement, are hereby |
30 |
* excluded. The University of Notre Dame and its licensors shall not |
31 |
* be liable for any damages suffered by licensee as a result of |
32 |
* using, modifying or distributing the software or its |
33 |
* derivatives. In no event will the University of Notre Dame or its |
34 |
* licensors be liable for any lost revenue, profit or data, or for |
35 |
* direct, indirect, special, consequential, incidental or punitive |
36 |
* damages, however caused and regardless of the theory of liability, |
37 |
* arising out of the use of or inability to use software, even if the |
38 |
* University of Notre Dame has been advised of the possibility of |
39 |
* such damages. |
40 |
*/ |
41 |
|
42 |
#include <math.h> |
43 |
|
44 |
#include "brains/SimInfo.hpp" |
45 |
#include "brains/Thermo.hpp" |
46 |
#include "integrators/NPT.hpp" |
47 |
#include "math/SquareMatrix3.hpp" |
48 |
#include "primitives/Molecule.hpp" |
49 |
#include "utils/OOPSEConstant.hpp" |
50 |
#include "utils/simError.h" |
51 |
|
52 |
// Basic isotropic thermostating and barostating via the Melchionna |
53 |
// modification of the Hoover algorithm: |
54 |
// |
55 |
// Melchionna, S., Ciccotti, G., and Holian, B. L., 1993, |
56 |
// Molec. Phys., 78, 533. |
57 |
// |
58 |
// and |
59 |
// |
60 |
// Hoover, W. G., 1986, Phys. Rev. A, 34, 2499. |
61 |
|
62 |
namespace oopse { |
63 |
|
64 |
NPT::NPT(SimInfo* info) : |
65 |
VelocityVerletIntegrator(info), chiTolerance(1e-6), etaTolerance(1e-6), maxIterNum_(4) { |
66 |
|
67 |
Globals* simParams = info_->getSimParams(); |
68 |
|
69 |
if (!simParams->getUseIntialExtendedSystemState()) { |
70 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
71 |
currSnapshot->setChi(0.0); |
72 |
currSnapshot->setIntegralOfChiDt(0.0); |
73 |
currSnapshot->setEta(Mat3x3d(0.0)); |
74 |
} |
75 |
|
76 |
if (!simParams->haveTargetTemp()) { |
77 |
sprintf(painCave.errMsg, "You can't use the NVT integrator without a targetTemp!\n"); |
78 |
painCave.isFatal = 1; |
79 |
painCave.severity = OOPSE_ERROR; |
80 |
simError(); |
81 |
} else { |
82 |
targetTemp = simParams->getTargetTemp(); |
83 |
} |
84 |
|
85 |
// We must set tauThermostat |
86 |
if (!simParams->haveTauThermostat()) { |
87 |
sprintf(painCave.errMsg, "If you use the constant temperature\n" |
88 |
"\tintegrator, you must set tauThermostat.\n"); |
89 |
|
90 |
painCave.severity = OOPSE_ERROR; |
91 |
painCave.isFatal = 1; |
92 |
simError(); |
93 |
} else { |
94 |
tauThermostat = simParams->getTauThermostat(); |
95 |
} |
96 |
|
97 |
if (!simParams->haveTargetPressure()) { |
98 |
sprintf(painCave.errMsg, "NPT error: You can't use the NPT integrator\n" |
99 |
" without a targetPressure!\n"); |
100 |
|
101 |
painCave.isFatal = 1; |
102 |
simError(); |
103 |
} else { |
104 |
targetPressure = simParams->getTargetPressure(); |
105 |
} |
106 |
|
107 |
if (!simParams->haveTauBarostat()) { |
108 |
sprintf(painCave.errMsg, |
109 |
"If you use the NPT integrator, you must set tauBarostat.\n"); |
110 |
painCave.severity = OOPSE_ERROR; |
111 |
painCave.isFatal = 1; |
112 |
simError(); |
113 |
} else { |
114 |
tauBarostat = simParams->getTauBarostat(); |
115 |
} |
116 |
|
117 |
tt2 = tauThermostat * tauThermostat; |
118 |
tb2 = tauBarostat * tauBarostat; |
119 |
|
120 |
update(); |
121 |
} |
122 |
|
123 |
NPT::~NPT() { |
124 |
} |
125 |
|
126 |
void NPT::doUpdate() { |
127 |
|
128 |
oldPos.resize(info_->getNIntegrableObjects()); |
129 |
oldVel.resize(info_->getNIntegrableObjects()); |
130 |
oldJi.resize(info_->getNIntegrableObjects()); |
131 |
|
132 |
} |
133 |
|
134 |
void NPT::moveA() { |
135 |
SimInfo::MoleculeIterator i; |
136 |
Molecule::IntegrableObjectIterator j; |
137 |
Molecule* mol; |
138 |
StuntDouble* integrableObject; |
139 |
Vector3d Tb, ji; |
140 |
RealType mass; |
141 |
Vector3d vel; |
142 |
Vector3d pos; |
143 |
Vector3d frc; |
144 |
Vector3d sc; |
145 |
int index; |
146 |
|
147 |
chi= currentSnapshot_->getChi(); |
148 |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
149 |
loadEta(); |
150 |
|
151 |
instaTemp =thermo.getTemperature(); |
152 |
press = thermo.getPressureTensor(); |
153 |
instaPress = OOPSEConstant::pressureConvert* (press(0, 0) + press(1, 1) + press(2, 2)) / 3.0; |
154 |
instaVol =thermo.getVolume(); |
155 |
|
156 |
Vector3d COM = info_->getCom(); |
157 |
|
158 |
//evolve velocity half step |
159 |
|
160 |
calcVelScale(); |
161 |
|
162 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
163 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
164 |
integrableObject = mol->nextIntegrableObject(j)) { |
165 |
|
166 |
vel = integrableObject->getVel(); |
167 |
frc = integrableObject->getFrc(); |
168 |
|
169 |
mass = integrableObject->getMass(); |
170 |
|
171 |
getVelScaleA(sc, vel); |
172 |
|
173 |
// velocity half step (use chi from previous step here): |
174 |
//vel[j] += dt2 * ((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
175 |
vel += dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
176 |
integrableObject->setVel(vel); |
177 |
|
178 |
if (integrableObject->isDirectional()) { |
179 |
|
180 |
// get and convert the torque to body frame |
181 |
|
182 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
183 |
|
184 |
// get the angular momentum, and propagate a half step |
185 |
|
186 |
ji = integrableObject->getJ(); |
187 |
|
188 |
//ji[j] += dt2 * (Tb[j] * OOPSEConstant::energyConvert - ji[j]*chi); |
189 |
ji += dt2*OOPSEConstant::energyConvert * Tb - dt2*chi* ji; |
190 |
|
191 |
rotAlgo->rotate(integrableObject, ji, dt); |
192 |
|
193 |
integrableObject->setJ(ji); |
194 |
} |
195 |
|
196 |
} |
197 |
} |
198 |
// evolve chi and eta half step |
199 |
|
200 |
chi += dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
201 |
|
202 |
evolveEtaA(); |
203 |
|
204 |
//calculate the integral of chidt |
205 |
integralOfChidt += dt2 * chi; |
206 |
|
207 |
index = 0; |
208 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
209 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
210 |
integrableObject = mol->nextIntegrableObject(j)) { |
211 |
oldPos[index++] = integrableObject->getPos(); |
212 |
} |
213 |
} |
214 |
|
215 |
//the first estimation of r(t+dt) is equal to r(t) |
216 |
|
217 |
for(int k = 0; k < maxIterNum_; k++) { |
218 |
index = 0; |
219 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
220 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
221 |
integrableObject = mol->nextIntegrableObject(j)) { |
222 |
|
223 |
vel = integrableObject->getVel(); |
224 |
pos = integrableObject->getPos(); |
225 |
|
226 |
this->getPosScale(pos, COM, index, sc); |
227 |
|
228 |
pos = oldPos[index] + dt * (vel + sc); |
229 |
integrableObject->setPos(pos); |
230 |
|
231 |
++index; |
232 |
} |
233 |
} |
234 |
|
235 |
rattle->constraintA(); |
236 |
} |
237 |
|
238 |
// Scale the box after all the positions have been moved: |
239 |
|
240 |
this->scaleSimBox(); |
241 |
|
242 |
currentSnapshot_->setChi(chi); |
243 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
244 |
|
245 |
saveEta(); |
246 |
} |
247 |
|
248 |
void NPT::moveB(void) { |
249 |
SimInfo::MoleculeIterator i; |
250 |
Molecule::IntegrableObjectIterator j; |
251 |
Molecule* mol; |
252 |
StuntDouble* integrableObject; |
253 |
int index; |
254 |
Vector3d Tb; |
255 |
Vector3d ji; |
256 |
Vector3d sc; |
257 |
Vector3d vel; |
258 |
Vector3d frc; |
259 |
RealType mass; |
260 |
|
261 |
|
262 |
chi= currentSnapshot_->getChi(); |
263 |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
264 |
RealType oldChi = chi; |
265 |
RealType prevChi; |
266 |
|
267 |
loadEta(); |
268 |
|
269 |
//save velocity and angular momentum |
270 |
index = 0; |
271 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
272 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
273 |
integrableObject = mol->nextIntegrableObject(j)) { |
274 |
|
275 |
oldVel[index] = integrableObject->getVel(); |
276 |
oldJi[index] = integrableObject->getJ(); |
277 |
++index; |
278 |
} |
279 |
} |
280 |
|
281 |
// do the iteration: |
282 |
instaVol =thermo.getVolume(); |
283 |
|
284 |
for(int k = 0; k < maxIterNum_; k++) { |
285 |
instaTemp =thermo.getTemperature(); |
286 |
instaPress =thermo.getPressure(); |
287 |
|
288 |
// evolve chi another half step using the temperature at t + dt/2 |
289 |
prevChi = chi; |
290 |
chi = oldChi + dt2 * (instaTemp / targetTemp - 1.0) / tt2; |
291 |
|
292 |
//evolve eta |
293 |
this->evolveEtaB(); |
294 |
this->calcVelScale(); |
295 |
|
296 |
index = 0; |
297 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
298 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
299 |
integrableObject = mol->nextIntegrableObject(j)) { |
300 |
|
301 |
frc = integrableObject->getFrc(); |
302 |
vel = integrableObject->getVel(); |
303 |
|
304 |
mass = integrableObject->getMass(); |
305 |
|
306 |
getVelScaleB(sc, index); |
307 |
|
308 |
// velocity half step |
309 |
//vel[j] = oldVel[3 * i + j] + dt2 *((frc[j] / mass) * OOPSEConstant::energyConvert - sc[j]); |
310 |
vel = oldVel[index] + dt2*OOPSEConstant::energyConvert/mass* frc - dt2*sc; |
311 |
integrableObject->setVel(vel); |
312 |
|
313 |
if (integrableObject->isDirectional()) { |
314 |
// get and convert the torque to body frame |
315 |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
316 |
|
317 |
//ji[j] = oldJi[3*i + j] + dt2 * (Tb[j] * OOPSEConstant::energyConvert - oldJi[3*i+j]*chi); |
318 |
ji = oldJi[index] + dt2*OOPSEConstant::energyConvert*Tb - dt2*chi*oldJi[index]; |
319 |
integrableObject->setJ(ji); |
320 |
} |
321 |
|
322 |
++index; |
323 |
} |
324 |
} |
325 |
|
326 |
rattle->constraintB(); |
327 |
|
328 |
if ((fabs(prevChi - chi) <= chiTolerance) && this->etaConverged()) |
329 |
break; |
330 |
} |
331 |
|
332 |
//calculate integral of chidt |
333 |
integralOfChidt += dt2 * chi; |
334 |
|
335 |
currentSnapshot_->setChi(chi); |
336 |
currentSnapshot_->setIntegralOfChiDt(integralOfChidt); |
337 |
|
338 |
saveEta(); |
339 |
} |
340 |
|
341 |
void NPT::resetIntegrator(){ |
342 |
currentSnapshot_->setChi(0.0); |
343 |
currentSnapshot_->setIntegralOfChiDt(0.0); |
344 |
resetEta(); |
345 |
} |
346 |
|
347 |
|
348 |
void NPT::resetEta() { |
349 |
Mat3x3d etaMat(0.0); |
350 |
currentSnapshot_->setEta(etaMat); |
351 |
} |
352 |
|
353 |
} |