6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include "brains/SimInfo.hpp" |
45 |
|
#include "integrators/IntegratorCreator.hpp" |
46 |
|
#include "integrators/NPAT.hpp" |
47 |
|
#include "primitives/Molecule.hpp" |
48 |
< |
#include "utils/OOPSEConstant.hpp" |
48 |
> |
#include "utils/PhysicalConstants.hpp" |
49 |
|
#include "utils/simError.h" |
50 |
|
|
51 |
< |
namespace oopse { |
51 |
> |
namespace OpenMD { |
52 |
|
|
53 |
|
void NPAT::evolveEtaA() { |
54 |
|
|
55 |
< |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
55 |
> |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
56 |
|
oldEta = eta; |
57 |
|
} |
58 |
|
|
60 |
|
|
61 |
|
prevEta = eta; |
62 |
|
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
63 |
< |
(press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2); |
63 |
> |
(press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
64 |
|
} |
65 |
|
|
66 |
|
void NPAT::calcVelScale(){ |
70 |
|
vScale(i, j) = eta(i, j); |
71 |
|
|
72 |
|
if (i == j) { |
73 |
< |
vScale(i, j) += chi; |
73 |
> |
vScale(i, j) += thermostat.first; |
74 |
|
} |
75 |
|
} |
76 |
|
} |
87 |
|
void NPAT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) { |
88 |
|
|
89 |
|
/**@todo */ |
90 |
< |
Vector3d rj = (oldPos[index] + pos)/2.0 -COM; |
90 |
> |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
91 |
|
sc = eta * rj; |
92 |
|
} |
93 |
|
|
104 |
|
} |
105 |
|
|
106 |
|
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
107 |
< |
Mat3x3d hmat = currentSnapshot_->getHmat(); |
107 |
> |
Mat3x3d hmat = snap->getHmat(); |
108 |
|
hmat = hmat *scaleMat; |
109 |
< |
currentSnapshot_->setHmat(hmat); |
109 |
> |
snap->setHmat(hmat); |
110 |
|
} |
111 |
|
|
112 |
|
bool NPAT::etaConverged() { |
113 |
|
int i; |
114 |
< |
double diffEta, sumEta; |
114 |
> |
RealType diffEta, sumEta; |
115 |
|
|
116 |
|
sumEta = 0; |
117 |
|
for(i = 0; i < 3; i++) { |
123 |
|
return ( diffEta <= etaTolerance ); |
124 |
|
} |
125 |
|
|
126 |
< |
double NPAT::calcConservedQuantity(){ |
126 |
> |
RealType NPAT::calcConservedQuantity(){ |
127 |
|
|
128 |
< |
chi= currentSnapshot_->getChi(); |
128 |
< |
integralOfChidt = currentSnapshot_->getIntegralOfChiDt(); |
128 |
> |
thermostat = snap->getThermostat(); |
129 |
|
loadEta(); |
130 |
|
|
131 |
|
// We need NkBT a lot, so just set it here: This is the RAW number |
132 |
|
// of integrableObjects, so no subtraction or addition of constraints or |
133 |
|
// orientational degrees of freedom: |
134 |
< |
NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp; |
134 |
> |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
135 |
|
|
136 |
|
// fkBT is used because the thermostat operates on more degrees of freedom |
137 |
|
// than the barostat (when there are particles with orientational degrees |
138 |
|
// of freedom). |
139 |
< |
fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp; |
139 |
> |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
140 |
|
|
141 |
< |
double conservedQuantity; |
142 |
< |
double totalEnergy; |
143 |
< |
double thermostat_kinetic; |
144 |
< |
double thermostat_potential; |
145 |
< |
double barostat_kinetic; |
146 |
< |
double barostat_potential; |
147 |
< |
double trEta; |
141 |
> |
RealType conservedQuantity; |
142 |
> |
RealType totalEnergy; |
143 |
> |
RealType thermostat_kinetic; |
144 |
> |
RealType thermostat_potential; |
145 |
> |
RealType barostat_kinetic; |
146 |
> |
RealType barostat_potential; |
147 |
> |
RealType trEta; |
148 |
|
|
149 |
< |
totalEnergy = thermo.getTotalE(); |
149 |
> |
totalEnergy = thermo.getTotalEnergy(); |
150 |
|
|
151 |
< |
thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert); |
151 |
> |
thermostat_kinetic = fkBT * tt2 * thermostat.first * |
152 |
> |
thermostat.first /(2.0 * PhysicalConstants::energyConvert); |
153 |
|
|
154 |
< |
thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert; |
154 |
> |
thermostat_potential = fkBT* thermostat.second / PhysicalConstants::energyConvert; |
155 |
|
|
156 |
< |
SquareMatrix<double, 3> tmp = eta.transpose() * eta; |
156 |
> |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
157 |
|
trEta = tmp.trace(); |
158 |
|
|
159 |
< |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert); |
159 |
> |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
160 |
|
|
161 |
< |
barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert; |
161 |
> |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
162 |
|
|
163 |
|
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
164 |
|
barostat_kinetic + barostat_potential; |
168 |
|
} |
169 |
|
|
170 |
|
void NPAT::loadEta() { |
171 |
< |
eta= currentSnapshot_->getEta(); |
171 |
> |
eta= snap->getBarostat(); |
172 |
|
|
173 |
|
//if (!eta.isDiagonal()) { |
174 |
|
// sprintf( painCave.errMsg, |
179 |
|
} |
180 |
|
|
181 |
|
void NPAT::saveEta() { |
182 |
< |
currentSnapshot_->setEta(eta); |
182 |
> |
snap->setBarostat(eta); |
183 |
|
} |
184 |
|
|
185 |
|
} |