ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/NPAT.cpp
(Generate patch)

Comparing trunk/src/integrators/NPAT.cpp (file contents):
Revision 536 by tim, Thu May 19 04:28:26 2005 UTC vs.
Revision 1390 by gezelter, Wed Nov 25 20:02:06 2009 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Vardeman & Gezelter, in progress (2009).                        
40   */
41  
42   #include "brains/SimInfo.hpp"
# Line 44 | Line 44
44   #include "integrators/IntegratorCreator.hpp"
45   #include "integrators/NPAT.hpp"
46   #include "primitives/Molecule.hpp"
47 < #include "utils/OOPSEConstant.hpp"
47 > #include "utils/PhysicalConstants.hpp"
48   #include "utils/simError.h"
49  
50 < namespace oopse {
50 > namespace OpenMD {
51    
52    void NPAT::evolveEtaA() {
53  
54 <    eta(2,2) += dt2 *  instaVol * (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2);
54 >    eta(2,2) += dt2 *  instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2);
55      oldEta = eta;  
56    }
57  
# Line 59 | Line 59 | namespace oopse {
59  
60      prevEta = eta;
61      eta(2,2) = oldEta(2, 2) + dt2 *  instaVol *
62 <            (press(2, 2) - targetPressure/OOPSEConstant::pressureConvert) / (NkBT*tb2);
62 >            (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2);
63    }
64  
65    void NPAT::calcVelScale(){
# Line 86 | Line 86 | namespace oopse {
86    void NPAT::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, Vector3d& sc) {
87  
88      /**@todo */
89 <    Vector3d rj = (oldPos[index] + pos)/2.0 -COM;
89 >    Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM;
90      sc = eta * rj;
91    }
92  
93    void NPAT::scaleSimBox(){
94
95    int i;
96    int j;
97    int k;
94      Mat3x3d scaleMat;
99    double eta2ij;
100    double bigScale, smallScale, offDiagMax;
101    Mat3x3d hm;
102    Mat3x3d hmnew;
95  
96 <
97 <
98 <    // Scale the box after all the positions have been moved:
99 <
100 <    // Use a taylor expansion for eta products:  Hmat = Hmat . exp(dt * etaMat)
101 <    //  Hmat = Hmat . ( Ident + dt * etaMat  + dt^2 * etaMat*etaMat / 2)
110 <
111 <    bigScale = 1.0;
112 <    smallScale = 1.0;
113 <    offDiagMax = 0.0;
114 <
115 <    for(i=0; i<3; i++){
116 <      for(j=0; j<3; j++){
117 <
118 <        // Calculate the matrix Product of the eta array (we only need
119 <        // the ij element right now):
120 <
121 <        eta2ij = 0.0;
122 <        for(k=0; k<3; k++){
123 <          eta2ij += eta(i, k) * eta(k, j);
124 <        }
125 <
126 <        scaleMat(i, j) = 0.0;
127 <        // identity matrix (see above):
128 <        if (i == j) scaleMat(i, j) = 1.0;
129 <        // Taylor expansion for the exponential truncated at second order:
130 <        scaleMat(i, j) += dt*eta(i, j)  + 0.5*dt*dt*eta2ij;
131 <      
132 <
133 <        if (i != j)
134 <          if (fabs(scaleMat(i, j)) > offDiagMax)
135 <            offDiagMax = fabs(scaleMat(i, j));
96 >    for(int i=0; i<3; i++){
97 >      for(int j=0; j<3; j++){
98 >              scaleMat(i, j) = 0.0;
99 >              if(i==j) {
100 >                scaleMat(i, j) = 1.0;
101 >              }
102        }
137
138      if (scaleMat(i, i) > bigScale) bigScale = scaleMat(i, i);
139      if (scaleMat(i, i) < smallScale) smallScale = scaleMat(i, i);
103      }
104 <
105 <    if ((bigScale > 1.01) || (smallScale < 0.99)) {
106 <      sprintf( painCave.errMsg,
107 <               "NPAT error: Attempting a Box scaling of more than 1 percent.\n"
108 <               " Check your tauBarostat, as it is probably too small!\n\n"
146 <               " scaleMat = [%lf\t%lf\t%lf]\n"
147 <               "            [%lf\t%lf\t%lf]\n"
148 <               "            [%lf\t%lf\t%lf]\n"
149 <               "      eta = [%lf\t%lf\t%lf]\n"
150 <               "            [%lf\t%lf\t%lf]\n"
151 <               "            [%lf\t%lf\t%lf]\n",
152 <               scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
153 <               scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
154 <               scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
155 <               eta(0, 0),eta(0, 1),eta(0, 2),
156 <               eta(1, 0),eta(1, 1),eta(1, 2),
157 <               eta(2, 0),eta(2, 1),eta(2, 2));
158 <      painCave.isFatal = 1;
159 <      simError();
160 <    } else if (offDiagMax > 0.01) {
161 <      sprintf( painCave.errMsg,
162 <               "NPAT error: Attempting an off-diagonal Box scaling of more than 1 percent.\n"
163 <               " Check your tauBarostat, as it is probably too small!\n\n"
164 <               " scaleMat = [%lf\t%lf\t%lf]\n"
165 <               "            [%lf\t%lf\t%lf]\n"
166 <               "            [%lf\t%lf\t%lf]\n"
167 <               "      eta = [%lf\t%lf\t%lf]\n"
168 <               "            [%lf\t%lf\t%lf]\n"
169 <               "            [%lf\t%lf\t%lf]\n",
170 <               scaleMat(0, 0),scaleMat(0, 1),scaleMat(0, 2),
171 <               scaleMat(1, 0),scaleMat(1, 1),scaleMat(1, 2),
172 <               scaleMat(2, 0),scaleMat(2, 1),scaleMat(2, 2),
173 <               eta(0, 0),eta(0, 1),eta(0, 2),
174 <               eta(1, 0),eta(1, 1),eta(1, 2),
175 <               eta(2, 0),eta(2, 1),eta(2, 2));
176 <      painCave.isFatal = 1;
177 <      simError();
178 <    } else {
179 <
180 <      Mat3x3d hmat = currentSnapshot_->getHmat();
181 <      hmat = hmat *scaleMat;
182 <      currentSnapshot_->setHmat(hmat);
183 <        
184 <    }
104 >    
105 >    scaleMat(2, 2) = exp(dt*eta(2, 2));
106 >    Mat3x3d hmat = currentSnapshot_->getHmat();
107 >    hmat = hmat *scaleMat;
108 >    currentSnapshot_->setHmat(hmat);
109    }
110  
111    bool NPAT::etaConverged() {
112      int i;
113 <    double diffEta, sumEta;
113 >    RealType diffEta, sumEta;
114  
115      sumEta = 0;
116      for(i = 0; i < 3; i++) {
# Line 198 | Line 122 | namespace oopse {
122      return ( diffEta <= etaTolerance );
123    }
124  
125 <  double NPAT::calcConservedQuantity(){
125 >  RealType NPAT::calcConservedQuantity(){
126  
127      chi= currentSnapshot_->getChi();
128      integralOfChidt = currentSnapshot_->getIntegralOfChiDt();
# Line 207 | Line 131 | namespace oopse {
131      // We need NkBT a lot, so just set it here: This is the RAW number
132      // of integrableObjects, so no subtraction or addition of constraints or
133      // orientational degrees of freedom:
134 <    NkBT = info_->getNGlobalIntegrableObjects()*OOPSEConstant::kB *targetTemp;
134 >    NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp;
135  
136      // fkBT is used because the thermostat operates on more degrees of freedom
137      // than the barostat (when there are particles with orientational degrees
138      // of freedom).  
139 <    fkBT = info_->getNdf()*OOPSEConstant::kB *targetTemp;    
139 >    fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp;    
140      
141 <    double conservedQuantity;
142 <    double totalEnergy;
143 <    double thermostat_kinetic;
144 <    double thermostat_potential;
145 <    double barostat_kinetic;
146 <    double barostat_potential;
147 <    double trEta;
141 >    RealType conservedQuantity;
142 >    RealType totalEnergy;
143 >    RealType thermostat_kinetic;
144 >    RealType thermostat_potential;
145 >    RealType barostat_kinetic;
146 >    RealType barostat_potential;
147 >    RealType trEta;
148  
149      totalEnergy = thermo.getTotalE();
150  
151 <    thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * OOPSEConstant::energyConvert);
151 >    thermostat_kinetic = fkBT * tt2 * chi * chi /(2.0 * PhysicalConstants::energyConvert);
152  
153 <    thermostat_potential = fkBT* integralOfChidt / OOPSEConstant::energyConvert;
153 >    thermostat_potential = fkBT* integralOfChidt / PhysicalConstants::energyConvert;
154  
155 <    SquareMatrix<double, 3> tmp = eta.transpose() * eta;
155 >    SquareMatrix<RealType, 3> tmp = eta.transpose() * eta;
156      trEta = tmp.trace();
157      
158 <    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * OOPSEConstant::energyConvert);
158 >    barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert);
159  
160 <    barostat_potential = (targetPressure * thermo.getVolume() / OOPSEConstant::pressureConvert) /OOPSEConstant::energyConvert;
160 >    barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert;
161  
162      conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential +
163        barostat_kinetic + barostat_potential;

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines