1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "brains/SimInfo.hpp" |
44 |
#include "brains/Thermo.hpp" |
45 |
#include "integrators/IntegratorCreator.hpp" |
46 |
#include "integrators/NPA.hpp" |
47 |
#include "primitives/Molecule.hpp" |
48 |
#include "utils/PhysicalConstants.hpp" |
49 |
#include "utils/simError.h" |
50 |
|
51 |
namespace OpenMD { |
52 |
|
53 |
void NPA::moveA() { |
54 |
SimInfo::MoleculeIterator i; |
55 |
Molecule::IntegrableObjectIterator j; |
56 |
Molecule* mol; |
57 |
StuntDouble* sd; |
58 |
Vector3d Tb, ji; |
59 |
RealType mass; |
60 |
Vector3d vel; |
61 |
Vector3d pos; |
62 |
Vector3d frc; |
63 |
Vector3d sc; |
64 |
int index; |
65 |
|
66 |
loadEta(); |
67 |
|
68 |
instaTemp =thermo.getTemperature(); |
69 |
press = thermo.getPressureTensor(); |
70 |
instaPress = PhysicalConstants::pressureConvert* (press(0, 0) + |
71 |
press(1, 1) + |
72 |
press(2, 2)) / 3.0; |
73 |
instaVol =thermo.getVolume(); |
74 |
|
75 |
Vector3d COM = thermo.getCom(); |
76 |
|
77 |
//evolve velocity half step |
78 |
|
79 |
calcVelScale(); |
80 |
|
81 |
for (mol = info_->beginMolecule(i); mol != NULL; |
82 |
mol = info_->nextMolecule(i)) { |
83 |
|
84 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
85 |
sd = mol->nextIntegrableObject(j)) { |
86 |
|
87 |
vel = sd->getVel(); |
88 |
frc = sd->getFrc(); |
89 |
|
90 |
mass = sd->getMass(); |
91 |
|
92 |
getVelScaleA(sc, vel); |
93 |
|
94 |
// velocity half step (use chi from previous step here): |
95 |
|
96 |
vel += dt2*PhysicalConstants::energyConvert/mass* frc - dt2*sc; |
97 |
sd->setVel(vel); |
98 |
|
99 |
if (sd->isDirectional()) { |
100 |
|
101 |
// get and convert the torque to body frame |
102 |
|
103 |
Tb = sd->lab2Body(sd->getTrq()); |
104 |
|
105 |
// get the angular momentum, and propagate a half step |
106 |
|
107 |
ji = sd->getJ(); |
108 |
|
109 |
ji += dt2*PhysicalConstants::energyConvert * Tb |
110 |
- dt2*thermostat.first* ji; |
111 |
|
112 |
rotAlgo_->rotate(sd, ji, dt); |
113 |
|
114 |
sd->setJ(ji); |
115 |
} |
116 |
} |
117 |
} |
118 |
// evolve eta a half step |
119 |
|
120 |
evolveEtaA(); |
121 |
flucQ_->moveA(); |
122 |
|
123 |
index = 0; |
124 |
for (mol = info_->beginMolecule(i); mol != NULL; |
125 |
mol = info_->nextMolecule(i)) { |
126 |
|
127 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
128 |
sd = mol->nextIntegrableObject(j)) { |
129 |
|
130 |
oldPos[index++] = sd->getPos(); |
131 |
|
132 |
} |
133 |
} |
134 |
|
135 |
//the first estimation of r(t+dt) is equal to r(t) |
136 |
|
137 |
for(int k = 0; k < maxIterNum_; k++) { |
138 |
index = 0; |
139 |
for (mol = info_->beginMolecule(i); mol != NULL; |
140 |
mol = info_->nextMolecule(i)) { |
141 |
|
142 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
143 |
sd = mol->nextIntegrableObject(j)) { |
144 |
|
145 |
vel = sd->getVel(); |
146 |
pos = sd->getPos(); |
147 |
|
148 |
this->getPosScale(pos, COM, index, sc); |
149 |
|
150 |
pos = oldPos[index] + dt * (vel + sc); |
151 |
sd->setPos(pos); |
152 |
|
153 |
++index; |
154 |
} |
155 |
} |
156 |
|
157 |
rattle_->constraintA(); |
158 |
} |
159 |
|
160 |
// Scale the box after all the positions have been moved: |
161 |
|
162 |
this->scaleSimBox(); |
163 |
|
164 |
saveEta(); |
165 |
} |
166 |
|
167 |
void NPA::moveB(void) { |
168 |
SimInfo::MoleculeIterator i; |
169 |
Molecule::IntegrableObjectIterator j; |
170 |
Molecule* mol; |
171 |
StuntDouble* sd; |
172 |
int index; |
173 |
Vector3d Tb; |
174 |
Vector3d ji; |
175 |
Vector3d sc; |
176 |
Vector3d vel; |
177 |
Vector3d frc; |
178 |
RealType mass; |
179 |
|
180 |
loadEta(); |
181 |
|
182 |
//save velocity and angular momentum |
183 |
index = 0; |
184 |
for (mol = info_->beginMolecule(i); mol != NULL; |
185 |
mol = info_->nextMolecule(i)) { |
186 |
|
187 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
188 |
sd = mol->nextIntegrableObject(j)) { |
189 |
|
190 |
oldVel[index] = sd->getVel(); |
191 |
|
192 |
if (sd->isDirectional()) |
193 |
oldJi[index] = sd->getJ(); |
194 |
|
195 |
++index; |
196 |
} |
197 |
} |
198 |
|
199 |
instaVol = thermo.getVolume(); |
200 |
instaTemp = thermo.getTemperature(); |
201 |
instaPress = thermo.getPressure(); |
202 |
|
203 |
//evolve eta |
204 |
this->evolveEtaB(); |
205 |
this->calcVelScale(); |
206 |
|
207 |
index = 0; |
208 |
for (mol = info_->beginMolecule(i); mol != NULL; |
209 |
mol = info_->nextMolecule(i)) { |
210 |
|
211 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
212 |
sd = mol->nextIntegrableObject(j)) { |
213 |
|
214 |
frc = sd->getFrc(); |
215 |
mass = sd->getMass(); |
216 |
|
217 |
getVelScaleB(sc, index); |
218 |
|
219 |
// velocity half step |
220 |
vel = oldVel[index] |
221 |
+ dt2*PhysicalConstants::energyConvert/mass* frc |
222 |
- dt2*sc; |
223 |
|
224 |
sd->setVel(vel); |
225 |
|
226 |
if (sd->isDirectional()) { |
227 |
// get and convert the torque to body frame |
228 |
Tb = sd->lab2Body(sd->getTrq()); |
229 |
|
230 |
ji = oldJi[index] |
231 |
+ dt2*PhysicalConstants::energyConvert*Tb |
232 |
- dt2*thermostat.first*oldJi[index]; |
233 |
|
234 |
sd->setJ(ji); |
235 |
} |
236 |
|
237 |
++index; |
238 |
} |
239 |
} |
240 |
|
241 |
rattle_->constraintB(); |
242 |
|
243 |
flucQ_->moveB(); |
244 |
saveEta(); |
245 |
} |
246 |
|
247 |
void NPA::evolveEtaA() { |
248 |
|
249 |
eta(2,2) += dt2 * instaVol * (press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
250 |
oldEta = eta; |
251 |
} |
252 |
|
253 |
void NPA::evolveEtaB() { |
254 |
|
255 |
prevEta = eta; |
256 |
eta(2,2) = oldEta(2, 2) + dt2 * instaVol * |
257 |
(press(2, 2) - targetPressure/PhysicalConstants::pressureConvert) / (NkBT*tb2); |
258 |
} |
259 |
|
260 |
void NPA::calcVelScale(){ |
261 |
|
262 |
for (int i = 0; i < 3; i++ ) { |
263 |
for (int j = 0; j < 3; j++ ) { |
264 |
vScale(i, j) = eta(i, j); |
265 |
} |
266 |
} |
267 |
} |
268 |
|
269 |
void NPA::getVelScaleA(Vector3d& sc, const Vector3d& vel){ |
270 |
sc = vScale * vel; |
271 |
} |
272 |
|
273 |
void NPA::getVelScaleB(Vector3d& sc, int index ) { |
274 |
sc = vScale * oldVel[index]; |
275 |
} |
276 |
|
277 |
void NPA::getPosScale(const Vector3d& pos, const Vector3d& COM, int index, |
278 |
Vector3d& sc) { |
279 |
|
280 |
Vector3d rj = (oldPos[index] + pos)/(RealType)2.0 -COM; |
281 |
sc = eta * rj; |
282 |
} |
283 |
|
284 |
void NPA::scaleSimBox(){ |
285 |
Mat3x3d scaleMat; |
286 |
|
287 |
for(int i=0; i<3; i++){ |
288 |
for(int j=0; j<3; j++){ |
289 |
scaleMat(i, j) = 0.0; |
290 |
if(i==j) { |
291 |
scaleMat(i, j) = 1.0; |
292 |
} |
293 |
} |
294 |
} |
295 |
|
296 |
scaleMat(2, 2) = exp(dt*eta(2, 2)); |
297 |
Mat3x3d hmat = snap->getHmat(); |
298 |
hmat = hmat *scaleMat; |
299 |
snap->setHmat(hmat); |
300 |
} |
301 |
|
302 |
bool NPA::etaConverged() { |
303 |
int i; |
304 |
RealType diffEta, sumEta; |
305 |
|
306 |
sumEta = 0; |
307 |
for(i = 0; i < 3; i++) { |
308 |
sumEta += pow(prevEta(i, i) - eta(i, i), 2); |
309 |
} |
310 |
|
311 |
diffEta = sqrt( sumEta / 3.0 ); |
312 |
|
313 |
return ( diffEta <= etaTolerance ); |
314 |
} |
315 |
|
316 |
RealType NPA::calcConservedQuantity(){ |
317 |
|
318 |
thermostat = snap->getThermostat(); |
319 |
loadEta(); |
320 |
|
321 |
// We need NkBT a lot, so just set it here: This is the RAW number |
322 |
// of integrableObjects, so no subtraction or addition of constraints or |
323 |
// orientational degrees of freedom: |
324 |
NkBT = info_->getNGlobalIntegrableObjects()*PhysicalConstants::kB *targetTemp; |
325 |
|
326 |
// fkBT is used because the thermostat operates on more degrees of freedom |
327 |
// than the barostat (when there are particles with orientational degrees |
328 |
// of freedom). |
329 |
fkBT = info_->getNdf()*PhysicalConstants::kB *targetTemp; |
330 |
|
331 |
RealType conservedQuantity; |
332 |
RealType totalEnergy; |
333 |
RealType thermostat_kinetic; |
334 |
RealType thermostat_potential; |
335 |
RealType barostat_kinetic; |
336 |
RealType barostat_potential; |
337 |
RealType trEta; |
338 |
|
339 |
totalEnergy = thermo.getTotalEnergy(); |
340 |
|
341 |
thermostat_kinetic = 0.0; |
342 |
thermostat_potential = 0.0; |
343 |
|
344 |
SquareMatrix<RealType, 3> tmp = eta.transpose() * eta; |
345 |
trEta = tmp.trace(); |
346 |
|
347 |
barostat_kinetic = NkBT * tb2 * trEta /(2.0 * PhysicalConstants::energyConvert); |
348 |
|
349 |
barostat_potential = (targetPressure * thermo.getVolume() / PhysicalConstants::pressureConvert) /PhysicalConstants::energyConvert; |
350 |
|
351 |
conservedQuantity = totalEnergy + thermostat_kinetic + thermostat_potential + |
352 |
barostat_kinetic + barostat_potential; |
353 |
|
354 |
return conservedQuantity; |
355 |
|
356 |
} |
357 |
|
358 |
void NPA::loadEta() { |
359 |
eta= snap->getBarostat(); |
360 |
|
361 |
//if (!eta.isDiagonal()) { |
362 |
// sprintf( painCave.errMsg, |
363 |
// "NPA error: the diagonal elements of eta matrix are not the same or etaMat is not a diagonal matrix"); |
364 |
// painCave.isFatal = 1; |
365 |
// simError(); |
366 |
//} |
367 |
} |
368 |
|
369 |
void NPA::saveEta() { |
370 |
snap->setBarostat(eta); |
371 |
} |
372 |
|
373 |
} |
374 |
|