35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
44 |
|
* @file LangevinDynamics.cpp |
45 |
|
* @author tlin |
46 |
|
* @date 11/08/2004 |
46 |
– |
* @time 15:13am |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
|
|
53 |
|
#include "integrators/LangevinHullForceManager.hpp" |
54 |
|
namespace OpenMD { |
55 |
|
|
56 |
– |
|
56 |
|
LangevinHullDynamics::LangevinHullDynamics(SimInfo* info) : VelocityVerletIntegrator(info){ |
57 |
|
setForceManager(new LangevinHullForceManager(info)); |
58 |
|
} |
61 |
|
SimInfo::MoleculeIterator i; |
62 |
|
Molecule::IntegrableObjectIterator j; |
63 |
|
Molecule* mol; |
64 |
< |
StuntDouble* integrableObject; |
64 |
> |
StuntDouble* sd; |
65 |
|
Vector3d vel; |
66 |
|
Vector3d pos; |
67 |
|
Vector3d frc; |
69 |
|
Vector3d ji; |
70 |
|
RealType mass; |
71 |
|
|
72 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
73 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
75 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
72 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
73 |
> |
mol = info_->nextMolecule(i)) { |
74 |
|
|
75 |
< |
vel =integrableObject->getVel(); |
76 |
< |
pos = integrableObject->getPos(); |
77 |
< |
frc = integrableObject->getFrc(); |
78 |
< |
mass = integrableObject->getMass(); |
75 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
76 |
> |
sd = mol->nextIntegrableObject(j)) { |
77 |
> |
|
78 |
> |
vel = sd->getVel(); |
79 |
> |
pos = sd->getPos(); |
80 |
> |
frc = sd->getFrc(); |
81 |
> |
mass = sd->getMass(); |
82 |
|
|
83 |
|
// velocity half step |
84 |
|
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
86 |
|
// position whole step |
87 |
|
pos += dt * vel; |
88 |
|
|
89 |
< |
integrableObject->setVel(vel); |
90 |
< |
integrableObject->setPos(pos); |
89 |
> |
sd->setVel(vel); |
90 |
> |
sd->setPos(pos); |
91 |
|
|
92 |
< |
if (integrableObject->isDirectional()){ |
92 |
> |
if (sd->isDirectional()){ |
93 |
|
|
94 |
|
// get and convert the torque to body frame |
95 |
|
|
96 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
96 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
97 |
|
|
98 |
|
// get the angular momentum, and propagate a half step |
99 |
|
|
100 |
< |
ji = integrableObject->getJ(); |
100 |
> |
ji = sd->getJ(); |
101 |
|
|
102 |
|
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
103 |
|
|
104 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
104 |
> |
rotAlgo_->rotate(sd, ji, dt); |
105 |
|
|
106 |
< |
integrableObject->setJ(ji); |
106 |
> |
sd->setJ(ji); |
107 |
|
} |
108 |
|
|
109 |
|
|
110 |
|
} |
111 |
|
} //end for(mol = info_->beginMolecule(i)) |
112 |
|
|
113 |
< |
rattle->constraintA(); |
114 |
< |
|
113 |
> |
flucQ_->moveA(); |
114 |
> |
rattle_->constraintA(); |
115 |
|
} |
116 |
|
|
117 |
|
void LangevinHullDynamics::moveB(){ |
118 |
|
SimInfo::MoleculeIterator i; |
119 |
|
Molecule::IntegrableObjectIterator j; |
120 |
|
Molecule* mol; |
121 |
< |
StuntDouble* integrableObject; |
121 |
> |
StuntDouble* sd; |
122 |
|
Vector3d vel; |
123 |
|
Vector3d frc; |
124 |
|
Vector3d Tb; |
125 |
|
Vector3d ji; |
126 |
|
RealType mass; |
127 |
|
|
128 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
129 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
129 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
128 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
129 |
> |
mol = info_->nextMolecule(i)) { |
130 |
|
|
131 |
< |
vel =integrableObject->getVel(); |
132 |
< |
frc = integrableObject->getFrc(); |
133 |
< |
mass = integrableObject->getMass(); |
131 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
132 |
> |
sd = mol->nextIntegrableObject(j)) { |
133 |
> |
|
134 |
> |
vel = sd->getVel(); |
135 |
> |
frc = sd->getFrc(); |
136 |
> |
mass = sd->getMass(); |
137 |
|
|
138 |
|
// velocity half step |
139 |
|
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
140 |
|
|
141 |
< |
integrableObject->setVel(vel); |
141 |
> |
sd->setVel(vel); |
142 |
|
|
143 |
< |
if (integrableObject->isDirectional()){ |
143 |
> |
if (sd->isDirectional()){ |
144 |
|
|
145 |
|
// get and convert the torque to body frame |
146 |
|
|
147 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
147 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
148 |
|
|
149 |
|
// get the angular momentum, and propagate a half step |
150 |
|
|
151 |
< |
ji = integrableObject->getJ(); |
151 |
> |
ji = sd->getJ(); |
152 |
|
|
153 |
|
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
154 |
|
|
155 |
< |
integrableObject->setJ(ji); |
155 |
> |
sd->setJ(ji); |
156 |
|
} |
157 |
|
|
158 |
|
|
159 |
|
} |
160 |
|
} //end for(mol = info_->beginMolecule(i)) |
161 |
|
|
162 |
< |
|
163 |
< |
rattle->constraintB(); |
161 |
< |
|
162 |
> |
flucQ_->moveB(); |
163 |
> |
rattle_->constraintB(); |
164 |
|
} |
165 |
|
|
164 |
– |
|
166 |
|
RealType LangevinHullDynamics::calcConservedQuantity() { |
167 |
|
return 0.0; |
168 |
|
} |