36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
39 |
> |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
> |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
54 |
|
#include "integrators/LangevinHullForceManager.hpp" |
55 |
|
namespace OpenMD { |
56 |
|
|
56 |
– |
|
57 |
|
LangevinHullDynamics::LangevinHullDynamics(SimInfo* info) : VelocityVerletIntegrator(info){ |
58 |
|
setForceManager(new LangevinHullForceManager(info)); |
59 |
|
} |
62 |
|
SimInfo::MoleculeIterator i; |
63 |
|
Molecule::IntegrableObjectIterator j; |
64 |
|
Molecule* mol; |
65 |
< |
StuntDouble* integrableObject; |
65 |
> |
StuntDouble* sd; |
66 |
|
Vector3d vel; |
67 |
|
Vector3d pos; |
68 |
|
Vector3d frc; |
70 |
|
Vector3d ji; |
71 |
|
RealType mass; |
72 |
|
|
73 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
74 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
75 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
73 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
74 |
> |
mol = info_->nextMolecule(i)) { |
75 |
|
|
76 |
< |
vel =integrableObject->getVel(); |
77 |
< |
pos = integrableObject->getPos(); |
78 |
< |
frc = integrableObject->getFrc(); |
79 |
< |
mass = integrableObject->getMass(); |
76 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
77 |
> |
sd = mol->nextIntegrableObject(j)) { |
78 |
> |
|
79 |
> |
vel = sd->getVel(); |
80 |
> |
pos = sd->getPos(); |
81 |
> |
frc = sd->getFrc(); |
82 |
> |
mass = sd->getMass(); |
83 |
|
|
84 |
|
// velocity half step |
85 |
|
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
87 |
|
// position whole step |
88 |
|
pos += dt * vel; |
89 |
|
|
90 |
< |
integrableObject->setVel(vel); |
91 |
< |
integrableObject->setPos(pos); |
90 |
> |
sd->setVel(vel); |
91 |
> |
sd->setPos(pos); |
92 |
|
|
93 |
< |
if (integrableObject->isDirectional()){ |
93 |
> |
if (sd->isDirectional()){ |
94 |
|
|
95 |
|
// get and convert the torque to body frame |
96 |
|
|
97 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
97 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
98 |
|
|
99 |
|
// get the angular momentum, and propagate a half step |
100 |
|
|
101 |
< |
ji = integrableObject->getJ(); |
101 |
> |
ji = sd->getJ(); |
102 |
|
|
103 |
|
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
104 |
|
|
105 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
105 |
> |
rotAlgo_->rotate(sd, ji, dt); |
106 |
|
|
107 |
< |
integrableObject->setJ(ji); |
107 |
> |
sd->setJ(ji); |
108 |
|
} |
109 |
|
|
110 |
|
|
111 |
|
} |
112 |
|
} //end for(mol = info_->beginMolecule(i)) |
113 |
|
|
114 |
< |
rattle->constraintA(); |
114 |
> |
flucQ_->moveA(); |
115 |
> |
rattle_->constraintA(); |
116 |
|
|
117 |
|
} |
118 |
|
|
120 |
|
SimInfo::MoleculeIterator i; |
121 |
|
Molecule::IntegrableObjectIterator j; |
122 |
|
Molecule* mol; |
123 |
< |
StuntDouble* integrableObject; |
123 |
> |
StuntDouble* sd; |
124 |
|
Vector3d vel; |
125 |
|
Vector3d frc; |
126 |
|
Vector3d Tb; |
127 |
|
Vector3d ji; |
128 |
|
RealType mass; |
129 |
|
|
130 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
131 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
129 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
130 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
131 |
> |
mol = info_->nextMolecule(i)) { |
132 |
|
|
133 |
< |
vel =integrableObject->getVel(); |
134 |
< |
frc = integrableObject->getFrc(); |
135 |
< |
mass = integrableObject->getMass(); |
133 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
134 |
> |
sd = mol->nextIntegrableObject(j)) { |
135 |
> |
|
136 |
> |
vel = sd->getVel(); |
137 |
> |
frc = sd->getFrc(); |
138 |
> |
mass = sd->getMass(); |
139 |
|
|
140 |
|
// velocity half step |
141 |
|
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
142 |
|
|
143 |
< |
integrableObject->setVel(vel); |
143 |
> |
sd->setVel(vel); |
144 |
|
|
145 |
< |
if (integrableObject->isDirectional()){ |
145 |
> |
if (sd->isDirectional()){ |
146 |
|
|
147 |
|
// get and convert the torque to body frame |
148 |
|
|
149 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
149 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
150 |
|
|
151 |
|
// get the angular momentum, and propagate a half step |
152 |
|
|
153 |
< |
ji = integrableObject->getJ(); |
153 |
> |
ji = sd->getJ(); |
154 |
|
|
155 |
|
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
156 |
|
|
157 |
< |
integrableObject->setJ(ji); |
157 |
> |
sd->setJ(ji); |
158 |
|
} |
159 |
|
|
160 |
|
|
161 |
|
} |
162 |
|
} //end for(mol = info_->beginMolecule(i)) |
163 |
|
|
164 |
< |
|
165 |
< |
rattle->constraintB(); |
161 |
< |
|
164 |
> |
flucQ_->moveB(); |
165 |
> |
rattle_->constraintB(); |
166 |
|
} |
167 |
|
|
168 |
|
|