6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
/** |
44 |
|
* @file LangevinDynamics.cpp |
45 |
|
* @author tlin |
46 |
|
* @date 11/08/2004 |
46 |
– |
* @time 15:13am |
47 |
|
* @version 1.0 |
48 |
|
*/ |
49 |
|
|
50 |
|
#include "integrators/LangevinDynamics.hpp" |
51 |
|
#include "primitives/Molecule.hpp" |
52 |
< |
#include "utils/OOPSEConstant.hpp" |
52 |
> |
#include "utils/PhysicalConstants.hpp" |
53 |
|
#include "integrators/LDForceManager.hpp" |
54 |
< |
namespace oopse { |
54 |
> |
namespace OpenMD { |
55 |
|
|
56 |
|
|
57 |
|
LangevinDynamics::LangevinDynamics(SimInfo* info) : VelocityVerletIntegrator(info){ |
58 |
|
setForceManager(new LDForceManager(info)); |
59 |
+ |
|
60 |
+ |
// Langevin Dynamics Force Manager needs to know about the half-time step |
61 |
+ |
// size to get convergence on the friction forces: |
62 |
+ |
dynamic_cast<LDForceManager*>(forceMan_)->setDt2(dt2); |
63 |
|
} |
64 |
|
|
65 |
|
void LangevinDynamics::moveA(){ |
66 |
|
SimInfo::MoleculeIterator i; |
67 |
|
Molecule::IntegrableObjectIterator j; |
68 |
|
Molecule* mol; |
69 |
< |
StuntDouble* integrableObject; |
69 |
> |
StuntDouble* sd; |
70 |
|
Vector3d vel; |
71 |
|
Vector3d pos; |
72 |
|
Vector3d frc; |
74 |
|
Vector3d ji; |
75 |
|
RealType mass; |
76 |
|
|
77 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
78 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
75 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
77 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
78 |
> |
mol = info_->nextMolecule(i)) { |
79 |
|
|
80 |
< |
vel =integrableObject->getVel(); |
81 |
< |
pos = integrableObject->getPos(); |
82 |
< |
frc = integrableObject->getFrc(); |
83 |
< |
mass = integrableObject->getMass(); |
80 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
81 |
> |
sd = mol->nextIntegrableObject(j)) { |
82 |
> |
|
83 |
> |
vel = sd->getVel(); |
84 |
> |
pos = sd->getPos(); |
85 |
> |
frc = sd->getFrc(); |
86 |
> |
mass = sd->getMass(); |
87 |
|
|
88 |
|
// velocity half step |
89 |
< |
vel += (dt2 /mass * OOPSEConstant::energyConvert) * frc; |
89 |
> |
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
90 |
|
|
91 |
|
// position whole step |
92 |
|
pos += dt * vel; |
93 |
|
|
94 |
< |
integrableObject->setVel(vel); |
95 |
< |
integrableObject->setPos(pos); |
94 |
> |
sd->setVel(vel); |
95 |
> |
sd->setPos(pos); |
96 |
|
|
97 |
< |
if (integrableObject->isDirectional()){ |
97 |
> |
if (sd->isDirectional()){ |
98 |
|
|
99 |
|
// get and convert the torque to body frame |
100 |
|
|
101 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
101 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
102 |
|
|
103 |
|
// get the angular momentum, and propagate a half step |
104 |
|
|
105 |
< |
ji = integrableObject->getJ(); |
105 |
> |
ji = sd->getJ(); |
106 |
|
|
107 |
< |
ji += (dt2 * OOPSEConstant::energyConvert) * Tb; |
107 |
> |
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
108 |
|
|
109 |
< |
rotAlgo->rotate(integrableObject, ji, dt); |
109 |
> |
rotAlgo_->rotate(sd, ji, dt); |
110 |
|
|
111 |
< |
integrableObject->setJ(ji); |
111 |
> |
sd->setJ(ji); |
112 |
|
} |
113 |
|
|
114 |
|
|
115 |
|
} |
116 |
|
} //end for(mol = info_->beginMolecule(i)) |
117 |
|
|
118 |
< |
rattle->constraintA(); |
119 |
< |
|
118 |
> |
flucQ_->moveA(); |
119 |
> |
rattle_->constraintA(); |
120 |
|
} |
121 |
|
|
122 |
|
void LangevinDynamics::moveB(){ |
123 |
|
SimInfo::MoleculeIterator i; |
124 |
|
Molecule::IntegrableObjectIterator j; |
125 |
|
Molecule* mol; |
126 |
< |
StuntDouble* integrableObject; |
126 |
> |
StuntDouble* sd; |
127 |
|
Vector3d vel; |
128 |
|
Vector3d frc; |
129 |
|
Vector3d Tb; |
130 |
|
Vector3d ji; |
131 |
|
RealType mass; |
132 |
|
|
133 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
134 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
129 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
133 |
> |
for (mol = info_->beginMolecule(i); mol != NULL; |
134 |
> |
mol = info_->nextMolecule(i)) { |
135 |
|
|
136 |
< |
vel =integrableObject->getVel(); |
137 |
< |
frc = integrableObject->getFrc(); |
138 |
< |
mass = integrableObject->getMass(); |
136 |
> |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
137 |
> |
sd = mol->nextIntegrableObject(j)) { |
138 |
> |
|
139 |
> |
vel = sd->getVel(); |
140 |
> |
frc = sd->getFrc(); |
141 |
> |
mass = sd->getMass(); |
142 |
|
|
143 |
|
// velocity half step |
144 |
< |
vel += (dt2 /mass * OOPSEConstant::energyConvert) * frc; |
144 |
> |
vel += (dt2 /mass * PhysicalConstants::energyConvert) * frc; |
145 |
|
|
146 |
< |
integrableObject->setVel(vel); |
146 |
> |
sd->setVel(vel); |
147 |
|
|
148 |
< |
if (integrableObject->isDirectional()){ |
148 |
> |
if (sd->isDirectional()){ |
149 |
|
|
150 |
|
// get and convert the torque to body frame |
151 |
|
|
152 |
< |
Tb = integrableObject->lab2Body(integrableObject->getTrq()); |
152 |
> |
Tb = sd->lab2Body(sd->getTrq()); |
153 |
|
|
154 |
|
// get the angular momentum, and propagate a half step |
155 |
|
|
156 |
< |
ji = integrableObject->getJ(); |
156 |
> |
ji = sd->getJ(); |
157 |
|
|
158 |
< |
ji += (dt2 * OOPSEConstant::energyConvert) * Tb; |
158 |
> |
ji += (dt2 * PhysicalConstants::energyConvert) * Tb; |
159 |
|
|
160 |
< |
integrableObject->setJ(ji); |
160 |
> |
sd->setJ(ji); |
161 |
|
} |
162 |
|
|
163 |
|
|
164 |
|
} |
165 |
|
} //end for(mol = info_->beginMolecule(i)) |
166 |
|
|
167 |
< |
|
168 |
< |
rattle->constraintB(); |
161 |
< |
|
167 |
> |
flucQ_->moveB(); |
168 |
> |
rattle_->constraintB(); |
169 |
|
} |
170 |
|
|
171 |
|
|
173 |
|
return 0.0; |
174 |
|
} |
175 |
|
|
176 |
< |
} //end namespace oopse |
176 |
> |
} //end namespace OpenMD |
177 |
|
|