ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/integrators/LDForceManager.cpp
Revision: 2071
Committed: Sat Mar 7 21:41:51 2015 UTC (10 years, 1 month ago) by gezelter
File size: 17578 byte(s)
Log Message:
Reducing the number of warnings when using g++ to compile.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42 #include <fstream>
43 #include <iostream>
44 #include "integrators/LDForceManager.hpp"
45 #include "math/CholeskyDecomposition.hpp"
46 #include "utils/PhysicalConstants.hpp"
47 #include "hydrodynamics/Sphere.hpp"
48 #include "hydrodynamics/Ellipsoid.hpp"
49 #include "utils/ElementsTable.hpp"
50 #include "types/LennardJonesAdapter.hpp"
51 #include "types/GayBerneAdapter.hpp"
52
53 namespace OpenMD {
54
55 LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info),
56 maxIterNum_(4),
57 forceTolerance_(1e-6) {
58 simParams = info->getSimParams();
59 veloMunge = new Velocitizer(info);
60
61 sphericalBoundaryConditions_ = false;
62 if (simParams->getUseSphericalBoundaryConditions()) {
63 sphericalBoundaryConditions_ = true;
64 if (simParams->haveLangevinBufferRadius()) {
65 langevinBufferRadius_ = simParams->getLangevinBufferRadius();
66 } else {
67 sprintf( painCave.errMsg,
68 "langevinBufferRadius must be specified "
69 "when useSphericalBoundaryConditions is turned on.\n");
70 painCave.severity = OPENMD_ERROR;
71 painCave.isFatal = 1;
72 simError();
73 }
74
75 if (simParams->haveFrozenBufferRadius()) {
76 frozenBufferRadius_ = simParams->getFrozenBufferRadius();
77 } else {
78 sprintf( painCave.errMsg,
79 "frozenBufferRadius must be specified "
80 "when useSphericalBoundaryConditions is turned on.\n");
81 painCave.severity = OPENMD_ERROR;
82 painCave.isFatal = 1;
83 simError();
84 }
85
86 if (frozenBufferRadius_ < langevinBufferRadius_) {
87 sprintf( painCave.errMsg,
88 "frozenBufferRadius has been set smaller than the "
89 "langevinBufferRadius. This is probably an error.\n");
90 painCave.severity = OPENMD_WARNING;
91 painCave.isFatal = 0;
92 simError();
93 }
94 }
95
96 // Build the hydroProp map:
97 std::map<std::string, HydroProp*> hydroPropMap;
98
99 Molecule* mol;
100 StuntDouble* sd;
101 SimInfo::MoleculeIterator i;
102 Molecule::IntegrableObjectIterator j;
103 bool needHydroPropFile = false;
104
105 for (mol = info->beginMolecule(i); mol != NULL;
106 mol = info->nextMolecule(i)) {
107
108 for (sd = mol->beginIntegrableObject(j); sd != NULL;
109 sd = mol->nextIntegrableObject(j)) {
110
111 if (sd->isRigidBody()) {
112 RigidBody* rb = static_cast<RigidBody*>(sd);
113 if (rb->getNumAtoms() > 1) needHydroPropFile = true;
114 }
115
116 }
117 }
118
119
120 if (needHydroPropFile) {
121 if (simParams->haveHydroPropFile()) {
122 hydroPropMap = parseFrictionFile(simParams->getHydroPropFile());
123 } else {
124 sprintf( painCave.errMsg,
125 "HydroPropFile must be set to a file name if Langevin Dynamics\n"
126 "\tis specified for rigidBodies which contain more than one atom\n"
127 "\tTo create a HydroPropFile, run the \"Hydro\" program.\n");
128 painCave.severity = OPENMD_ERROR;
129 painCave.isFatal = 1;
130 simError();
131 }
132
133 for (mol = info->beginMolecule(i); mol != NULL;
134 mol = info->nextMolecule(i)) {
135
136 for (sd = mol->beginIntegrableObject(j); sd != NULL;
137 sd = mol->nextIntegrableObject(j)) {
138
139 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType());
140 if (iter != hydroPropMap.end()) {
141 hydroProps_.push_back(iter->second);
142 } else {
143 sprintf( painCave.errMsg,
144 "Can not find resistance tensor for atom [%s]\n", sd->getType().c_str());
145 painCave.severity = OPENMD_ERROR;
146 painCave.isFatal = 1;
147 simError();
148 }
149 }
150 }
151 } else {
152
153 std::map<std::string, HydroProp*> hydroPropMap;
154 for (mol = info->beginMolecule(i); mol != NULL;
155 mol = info->nextMolecule(i)) {
156
157 for (sd = mol->beginIntegrableObject(j); sd != NULL;
158 sd = mol->nextIntegrableObject(j)) {
159
160 Shape* currShape = NULL;
161
162 if (sd->isAtom()){
163 Atom* atom = static_cast<Atom*>(sd);
164 AtomType* atomType = atom->getAtomType();
165 GayBerneAdapter gba = GayBerneAdapter(atomType);
166 if (gba.isGayBerne()) {
167 currShape = new Ellipsoid(V3Zero, gba.getL() / 2.0,
168 gba.getD() / 2.0,
169 Mat3x3d::identity());
170 } else {
171 LennardJonesAdapter lja = LennardJonesAdapter(atomType);
172 if (lja.isLennardJones()){
173 currShape = new Sphere(atom->getPos(), lja.getSigma()/2.0);
174 } else {
175 int aNum = etab.GetAtomicNum((atom->getType()).c_str());
176 if (aNum != 0) {
177 currShape = new Sphere(atom->getPos(), etab.GetVdwRad(aNum));
178 } else {
179 sprintf( painCave.errMsg,
180 "Could not find atom type in default element.txt\n");
181 painCave.severity = OPENMD_ERROR;
182 painCave.isFatal = 1;
183 simError();
184 }
185 }
186 }
187 }
188
189 if (!simParams->haveTargetTemp()) {
190 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a targetTemp!\n");
191 painCave.isFatal = 1;
192 painCave.severity = OPENMD_ERROR;
193 simError();
194 }
195
196 if (!simParams->haveViscosity()) {
197 sprintf(painCave.errMsg, "You can't use LangevinDynamics without a viscosity!\n");
198 painCave.isFatal = 1;
199 painCave.severity = OPENMD_ERROR;
200 simError();
201 }
202
203
204 HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp());
205 std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(sd->getType());
206 if (iter != hydroPropMap.end())
207 hydroProps_.push_back(iter->second);
208 else {
209 currHydroProp->complete();
210 hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(sd->getType(), currHydroProp));
211 hydroProps_.push_back(currHydroProp);
212 }
213 delete currShape;
214 }
215 }
216 }
217 variance_ = 2.0 * PhysicalConstants::kb*simParams->getTargetTemp()/simParams->getDt();
218 }
219
220 std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) {
221 std::map<std::string, HydroProp*> props;
222 std::ifstream ifs(filename.c_str());
223 if (ifs.is_open()) {
224
225 }
226
227 const unsigned int BufferSize = 65535;
228 char buffer[BufferSize];
229 while (ifs.getline(buffer, BufferSize)) {
230 HydroProp* currProp = new HydroProp(buffer);
231 props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp));
232 }
233
234 return props;
235 }
236
237 void LDForceManager::postCalculation(){
238 SimInfo::MoleculeIterator i;
239 Molecule::IntegrableObjectIterator j;
240 Molecule* mol;
241 StuntDouble* sd;
242 RealType mass;
243 Vector3d pos;
244 Vector3d frc;
245 Mat3x3d A;
246 Mat3x3d Atrans;
247 Vector3d Tb;
248 Vector3d ji;
249 unsigned int index = 0;
250 bool doLangevinForces;
251 bool freezeMolecule;
252 int fdf;
253
254 fdf = 0;
255
256 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
257
258 doLangevinForces = true;
259 freezeMolecule = false;
260
261 if (sphericalBoundaryConditions_) {
262
263 Vector3d molPos = mol->getCom();
264 RealType molRad = molPos.length();
265
266 doLangevinForces = false;
267
268 if (molRad > langevinBufferRadius_) {
269 doLangevinForces = true;
270 freezeMolecule = false;
271 }
272 if (molRad > frozenBufferRadius_) {
273 doLangevinForces = false;
274 freezeMolecule = true;
275 }
276 }
277
278 for (sd = mol->beginIntegrableObject(j); sd != NULL;
279 sd = mol->nextIntegrableObject(j)) {
280
281 if (freezeMolecule)
282 fdf += sd->freeze();
283
284 if (doLangevinForces) {
285 mass = sd->getMass();
286 if (sd->isDirectional()){
287
288 // preliminaries for directional objects:
289
290 A = sd->getA();
291 Atrans = A.transpose();
292 Vector3d rcrLab = Atrans * hydroProps_[index]->getCOR();
293
294 //apply random force and torque at center of resistance
295
296 Vector3d randomForceBody;
297 Vector3d randomTorqueBody;
298 genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_);
299 Vector3d randomForceLab = Atrans * randomForceBody;
300 Vector3d randomTorqueLab = Atrans * randomTorqueBody;
301 sd->addFrc(randomForceLab);
302 sd->addTrq(randomTorqueLab + cross(rcrLab, randomForceLab ));
303
304 Mat3x3d I = sd->getI();
305 Vector3d omegaBody;
306
307 // What remains contains velocity explicitly, but the velocity required
308 // is at the full step: v(t + h), while we have initially the velocity
309 // at the half step: v(t + h/2). We need to iterate to converge the
310 // friction force and friction torque vectors.
311
312 // this is the velocity at the half-step:
313
314 Vector3d vel =sd->getVel();
315 Vector3d angMom = sd->getJ();
316
317 //estimate velocity at full-step using everything but friction forces:
318
319 frc = sd->getFrc();
320 Vector3d velStep = vel + (dt2_ /mass * PhysicalConstants::energyConvert) * frc;
321
322 Tb = sd->lab2Body(sd->getTrq());
323 Vector3d angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * Tb;
324
325 Vector3d omegaLab;
326 Vector3d vcdLab;
327 Vector3d vcdBody;
328 Vector3d frictionForceBody;
329 Vector3d frictionForceLab(0.0);
330 Vector3d oldFFL; // used to test for convergence
331 Vector3d frictionTorqueBody(0.0);
332 Vector3d oldFTB; // used to test for convergence
333 Vector3d frictionTorqueLab;
334 RealType fdot;
335 RealType tdot;
336
337 //iteration starts here:
338
339 for (int k = 0; k < maxIterNum_; k++) {
340
341 if (sd->isLinear()) {
342 int linearAxis = sd->linearAxis();
343 int l = (linearAxis +1 )%3;
344 int m = (linearAxis +2 )%3;
345 omegaBody[l] = angMomStep[l] /I(l, l);
346 omegaBody[m] = angMomStep[m] /I(m, m);
347
348 } else {
349 omegaBody[0] = angMomStep[0] /I(0, 0);
350 omegaBody[1] = angMomStep[1] /I(1, 1);
351 omegaBody[2] = angMomStep[2] /I(2, 2);
352 }
353
354 omegaLab = Atrans * omegaBody;
355
356 // apply friction force and torque at center of resistance
357
358 vcdLab = velStep + cross(omegaLab, rcrLab);
359 vcdBody = A * vcdLab;
360 frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omegaBody);
361 oldFFL = frictionForceLab;
362 frictionForceLab = Atrans * frictionForceBody;
363 oldFTB = frictionTorqueBody;
364 frictionTorqueBody = -(hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omegaBody);
365 frictionTorqueLab = Atrans * frictionTorqueBody;
366
367 // re-estimate velocities at full-step using friction forces:
368
369 velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForceLab);
370 angMomStep = angMom + (dt2_ * PhysicalConstants::energyConvert) * (Tb + frictionTorqueBody);
371
372 // check for convergence (if the vectors have converged, fdot and tdot will both be 1.0):
373
374 fdot = dot(frictionForceLab, oldFFL) / frictionForceLab.lengthSquare();
375 tdot = dot(frictionTorqueBody, oldFTB) / frictionTorqueBody.lengthSquare();
376
377 if (fabs(1.0 - fdot) <= forceTolerance_ && fabs(1.0 - tdot) <= forceTolerance_)
378 break; // iteration ends here
379 }
380
381 sd->addFrc(frictionForceLab);
382 sd->addTrq(frictionTorqueLab + cross(rcrLab, frictionForceLab));
383
384
385 } else {
386 //spherical atom
387
388 Vector3d randomForce;
389 Vector3d randomTorque;
390 genRandomForceAndTorque(randomForce, randomTorque, index, variance_);
391 sd->addFrc(randomForce);
392
393 // What remains contains velocity explicitly, but the velocity required
394 // is at the full step: v(t + h), while we have initially the velocity
395 // at the half step: v(t + h/2). We need to iterate to converge the
396 // friction force vector.
397
398 // this is the velocity at the half-step:
399
400 Vector3d vel =sd->getVel();
401
402 //estimate velocity at full-step using everything but friction forces:
403
404 frc = sd->getFrc();
405 Vector3d velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * frc;
406
407 Vector3d frictionForce(0.0);
408 Vector3d oldFF; // used to test for convergence
409 RealType fdot;
410
411 //iteration starts here:
412
413 for (int k = 0; k < maxIterNum_; k++) {
414
415 oldFF = frictionForce;
416 frictionForce = -hydroProps_[index]->getXitt() * velStep;
417
418 // re-estimate velocities at full-step using friction forces:
419
420 velStep = vel + (dt2_ / mass * PhysicalConstants::energyConvert) * (frc + frictionForce);
421
422 // check for convergence (if the vector has converged, fdot will be 1.0):
423
424 fdot = dot(frictionForce, oldFF) / frictionForce.lengthSquare();
425
426 if (fabs(1.0 - fdot) <= forceTolerance_)
427 break; // iteration ends here
428 }
429
430 sd->addFrc(frictionForce);
431
432 }
433 }
434
435 ++index;
436
437 }
438 }
439
440 info_->setFdf(fdf);
441 veloMunge->removeComDrift();
442 // Remove angular drift if we are not using periodic boundary conditions.
443 if(!simParams->getUsePeriodicBoundaryConditions())
444 veloMunge->removeAngularDrift();
445
446 ForceManager::postCalculation();
447 }
448
449 void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) {
450
451
452 Vector<RealType, 6> Z;
453 Vector<RealType, 6> generalForce;
454
455 Z[0] = randNumGen_.randNorm(0, variance);
456 Z[1] = randNumGen_.randNorm(0, variance);
457 Z[2] = randNumGen_.randNorm(0, variance);
458 Z[3] = randNumGen_.randNorm(0, variance);
459 Z[4] = randNumGen_.randNorm(0, variance);
460 Z[5] = randNumGen_.randNorm(0, variance);
461
462 generalForce = hydroProps_[index]->getS()*Z;
463
464 force[0] = generalForce[0];
465 force[1] = generalForce[1];
466 force[2] = generalForce[2];
467 torque[0] = generalForce[3];
468 torque[1] = generalForce[4];
469 torque[2] = generalForce[5];
470
471 }
472
473 }

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date