| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Acknowledgement of the program authors must be made in any |
| 10 |
* publication of scientific results based in part on use of the |
| 11 |
* program. An acceptable form of acknowledgement is citation of |
| 12 |
* the article in which the program was described (Matthew |
| 13 |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
| 14 |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
| 15 |
* Parallel Simulation Engine for Molecular Dynamics," |
| 16 |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
| 17 |
* |
| 18 |
* 2. Redistributions of source code must retain the above copyright |
| 19 |
* notice, this list of conditions and the following disclaimer. |
| 20 |
* |
| 21 |
* 3. Redistributions in binary form must reproduce the above copyright |
| 22 |
* notice, this list of conditions and the following disclaimer in the |
| 23 |
* documentation and/or other materials provided with the |
| 24 |
* distribution. |
| 25 |
* |
| 26 |
* This software is provided "AS IS," without a warranty of any |
| 27 |
* kind. All express or implied conditions, representations and |
| 28 |
* warranties, including any implied warranty of merchantability, |
| 29 |
* fitness for a particular purpose or non-infringement, are hereby |
| 30 |
* excluded. The University of Notre Dame and its licensors shall not |
| 31 |
* be liable for any damages suffered by licensee as a result of |
| 32 |
* using, modifying or distributing the software or its |
| 33 |
* derivatives. In no event will the University of Notre Dame or its |
| 34 |
* licensors be liable for any lost revenue, profit or data, or for |
| 35 |
* direct, indirect, special, consequential, incidental or punitive |
| 36 |
* damages, however caused and regardless of the theory of liability, |
| 37 |
* arising out of the use of or inability to use software, even if the |
| 38 |
* University of Notre Dame has been advised of the possibility of |
| 39 |
* such damages. |
| 40 |
*/ |
| 41 |
#include <fstream> |
| 42 |
#include <iostream> |
| 43 |
#include "integrators/LDForceManager.hpp" |
| 44 |
#include "math/CholeskyDecomposition.hpp" |
| 45 |
#include "utils/OOPSEConstant.hpp" |
| 46 |
#include "hydrodynamics/Sphere.hpp" |
| 47 |
#include "hydrodynamics/Ellipsoid.hpp" |
| 48 |
#include "utils/ElementsTable.hpp" |
| 49 |
|
| 50 |
namespace oopse { |
| 51 |
|
| 52 |
LDForceManager::LDForceManager(SimInfo* info) : ForceManager(info){ |
| 53 |
simParams = info->getSimParams(); |
| 54 |
veloMunge = new Velocitizer(info); |
| 55 |
|
| 56 |
sphericalBoundaryConditions_ = false; |
| 57 |
if (simParams->getUseSphericalBoundaryConditions()) { |
| 58 |
sphericalBoundaryConditions_ = true; |
| 59 |
if (simParams->haveLangevinBufferRadius()) { |
| 60 |
langevinBufferRadius_ = simParams->getLangevinBufferRadius(); |
| 61 |
} else { |
| 62 |
sprintf( painCave.errMsg, |
| 63 |
"langevinBufferRadius must be specified " |
| 64 |
"when useSphericalBoundaryConditions is turned on.\n"); |
| 65 |
painCave.severity = OOPSE_ERROR; |
| 66 |
painCave.isFatal = 1; |
| 67 |
simError(); |
| 68 |
} |
| 69 |
|
| 70 |
if (simParams->haveFrozenBufferRadius()) { |
| 71 |
frozenBufferRadius_ = simParams->getFrozenBufferRadius(); |
| 72 |
} else { |
| 73 |
sprintf( painCave.errMsg, |
| 74 |
"frozenBufferRadius must be specified " |
| 75 |
"when useSphericalBoundaryConditions is turned on.\n"); |
| 76 |
painCave.severity = OOPSE_ERROR; |
| 77 |
painCave.isFatal = 1; |
| 78 |
simError(); |
| 79 |
} |
| 80 |
|
| 81 |
if (frozenBufferRadius_ < langevinBufferRadius_) { |
| 82 |
sprintf( painCave.errMsg, |
| 83 |
"frozenBufferRadius has been set smaller than the " |
| 84 |
"langevinBufferRadius. This is probably an error.\n"); |
| 85 |
painCave.severity = OOPSE_WARNING; |
| 86 |
painCave.isFatal = 0; |
| 87 |
simError(); |
| 88 |
} |
| 89 |
} |
| 90 |
|
| 91 |
// Build the hydroProp map: |
| 92 |
std::map<std::string, HydroProp*> hydroPropMap; |
| 93 |
|
| 94 |
Molecule* mol; |
| 95 |
StuntDouble* integrableObject; |
| 96 |
SimInfo::MoleculeIterator i; |
| 97 |
Molecule::IntegrableObjectIterator j; |
| 98 |
bool needHydroPropFile = false; |
| 99 |
|
| 100 |
for (mol = info->beginMolecule(i); mol != NULL; |
| 101 |
mol = info->nextMolecule(i)) { |
| 102 |
for (integrableObject = mol->beginIntegrableObject(j); |
| 103 |
integrableObject != NULL; |
| 104 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 105 |
|
| 106 |
if (integrableObject->isRigidBody()) { |
| 107 |
RigidBody* rb = static_cast<RigidBody*>(integrableObject); |
| 108 |
if (rb->getNumAtoms() > 1) needHydroPropFile = true; |
| 109 |
} |
| 110 |
|
| 111 |
} |
| 112 |
} |
| 113 |
|
| 114 |
|
| 115 |
if (needHydroPropFile) { |
| 116 |
if (simParams->haveHydroPropFile()) { |
| 117 |
hydroPropMap = parseFrictionFile(simParams->getHydroPropFile()); |
| 118 |
} else { |
| 119 |
sprintf( painCave.errMsg, |
| 120 |
"HydroPropFile must be set to a file name if Langevin\n" |
| 121 |
"\tDynamics is specified for rigidBodies which contain more\n" |
| 122 |
"\tthan one atom. To create a HydroPropFile, run \"Hydro\".\n"); |
| 123 |
painCave.severity = OOPSE_ERROR; |
| 124 |
painCave.isFatal = 1; |
| 125 |
simError(); |
| 126 |
} |
| 127 |
|
| 128 |
for (mol = info->beginMolecule(i); mol != NULL; |
| 129 |
mol = info->nextMolecule(i)) { |
| 130 |
for (integrableObject = mol->beginIntegrableObject(j); |
| 131 |
integrableObject != NULL; |
| 132 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 133 |
|
| 134 |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
| 135 |
if (iter != hydroPropMap.end()) { |
| 136 |
hydroProps_.push_back(iter->second); |
| 137 |
} else { |
| 138 |
sprintf( painCave.errMsg, |
| 139 |
"Can not find resistance tensor for atom [%s]\n", integrableObject->getType().c_str()); |
| 140 |
painCave.severity = OOPSE_ERROR; |
| 141 |
painCave.isFatal = 1; |
| 142 |
simError(); |
| 143 |
} |
| 144 |
} |
| 145 |
} |
| 146 |
} else { |
| 147 |
|
| 148 |
std::map<std::string, HydroProp*> hydroPropMap; |
| 149 |
for (mol = info->beginMolecule(i); mol != NULL; |
| 150 |
mol = info->nextMolecule(i)) { |
| 151 |
for (integrableObject = mol->beginIntegrableObject(j); |
| 152 |
integrableObject != NULL; |
| 153 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 154 |
Shape* currShape = NULL; |
| 155 |
|
| 156 |
if (integrableObject->isAtom()){ |
| 157 |
Atom* atom = static_cast<Atom*>(integrableObject); |
| 158 |
AtomType* atomType = atom->getAtomType(); |
| 159 |
if (atomType->isGayBerne()) { |
| 160 |
DirectionalAtomType* dAtomType = dynamic_cast<DirectionalAtomType*>(atomType); |
| 161 |
GenericData* data = dAtomType->getPropertyByName("GayBerne"); |
| 162 |
if (data != NULL) { |
| 163 |
GayBerneParamGenericData* gayBerneData = dynamic_cast<GayBerneParamGenericData*>(data); |
| 164 |
|
| 165 |
if (gayBerneData != NULL) { |
| 166 |
GayBerneParam gayBerneParam = gayBerneData->getData(); |
| 167 |
currShape = new Ellipsoid(V3Zero, |
| 168 |
gayBerneParam.GB_l / 2.0, |
| 169 |
gayBerneParam.GB_d / 2.0, |
| 170 |
Mat3x3d::identity()); |
| 171 |
} else { |
| 172 |
sprintf( painCave.errMsg, |
| 173 |
"Can not cast GenericData to GayBerneParam\n"); |
| 174 |
painCave.severity = OOPSE_ERROR; |
| 175 |
painCave.isFatal = 1; |
| 176 |
simError(); |
| 177 |
} |
| 178 |
} else { |
| 179 |
sprintf( painCave.errMsg, "Can not find Parameters for GayBerne\n"); |
| 180 |
painCave.severity = OOPSE_ERROR; |
| 181 |
painCave.isFatal = 1; |
| 182 |
simError(); |
| 183 |
} |
| 184 |
} else { |
| 185 |
if (atomType->isLennardJones()){ |
| 186 |
GenericData* data = atomType->getPropertyByName("LennardJones"); |
| 187 |
if (data != NULL) { |
| 188 |
LJParamGenericData* ljData = dynamic_cast<LJParamGenericData*>(data); |
| 189 |
if (ljData != NULL) { |
| 190 |
LJParam ljParam = ljData->getData(); |
| 191 |
currShape = new Sphere(atom->getPos(), ljParam.sigma/2.0); |
| 192 |
} else { |
| 193 |
sprintf( painCave.errMsg, |
| 194 |
"Can not cast GenericData to LJParam\n"); |
| 195 |
painCave.severity = OOPSE_ERROR; |
| 196 |
painCave.isFatal = 1; |
| 197 |
simError(); |
| 198 |
} |
| 199 |
} |
| 200 |
} else { |
| 201 |
int obanum = etab.GetAtomicNum((atom->getType()).c_str()); |
| 202 |
if (obanum != 0) { |
| 203 |
currShape = new Sphere(atom->getPos(), etab.GetVdwRad(obanum)); |
| 204 |
} else { |
| 205 |
sprintf( painCave.errMsg, |
| 206 |
"Could not find atom type in default element.txt\n"); |
| 207 |
painCave.severity = OOPSE_ERROR; |
| 208 |
painCave.isFatal = 1; |
| 209 |
simError(); |
| 210 |
} |
| 211 |
} |
| 212 |
} |
| 213 |
} |
| 214 |
HydroProp* currHydroProp = currShape->getHydroProp(simParams->getViscosity(),simParams->getTargetTemp()); |
| 215 |
std::map<std::string, HydroProp*>::iterator iter = hydroPropMap.find(integrableObject->getType()); |
| 216 |
if (iter != hydroPropMap.end()) |
| 217 |
hydroProps_.push_back(iter->second); |
| 218 |
else { |
| 219 |
currHydroProp->complete(); |
| 220 |
hydroPropMap.insert(std::map<std::string, HydroProp*>::value_type(integrableObject->getType(), currHydroProp)); |
| 221 |
hydroProps_.push_back(currHydroProp); |
| 222 |
} |
| 223 |
} |
| 224 |
} |
| 225 |
} |
| 226 |
variance_ = 2.0 * OOPSEConstant::kb*simParams->getTargetTemp()/simParams->getDt(); |
| 227 |
} |
| 228 |
|
| 229 |
std::map<std::string, HydroProp*> LDForceManager::parseFrictionFile(const std::string& filename) { |
| 230 |
std::map<std::string, HydroProp*> props; |
| 231 |
std::ifstream ifs(filename.c_str()); |
| 232 |
if (ifs.is_open()) { |
| 233 |
|
| 234 |
} |
| 235 |
|
| 236 |
const unsigned int BufferSize = 65535; |
| 237 |
char buffer[BufferSize]; |
| 238 |
while (ifs.getline(buffer, BufferSize)) { |
| 239 |
HydroProp* currProp = new HydroProp(buffer); |
| 240 |
props.insert(std::map<std::string, HydroProp*>::value_type(currProp->getName(), currProp)); |
| 241 |
} |
| 242 |
|
| 243 |
return props; |
| 244 |
} |
| 245 |
|
| 246 |
void LDForceManager::postCalculation(bool needStress){ |
| 247 |
SimInfo::MoleculeIterator i; |
| 248 |
Molecule::IntegrableObjectIterator j; |
| 249 |
Molecule* mol; |
| 250 |
StuntDouble* integrableObject; |
| 251 |
RealType mass; |
| 252 |
Vector3d vel; |
| 253 |
Vector3d pos; |
| 254 |
Vector3d frc; |
| 255 |
Mat3x3d A; |
| 256 |
Mat3x3d Atrans; |
| 257 |
Vector3d Tb; |
| 258 |
Vector3d ji; |
| 259 |
unsigned int index = 0; |
| 260 |
bool doLangevinForces; |
| 261 |
bool freezeMolecule; |
| 262 |
int fdf; |
| 263 |
|
| 264 |
|
| 265 |
|
| 266 |
fdf = 0; |
| 267 |
|
| 268 |
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
| 269 |
|
| 270 |
doLangevinForces = true; |
| 271 |
freezeMolecule = false; |
| 272 |
|
| 273 |
if (sphericalBoundaryConditions_) { |
| 274 |
|
| 275 |
Vector3d molPos = mol->getCom(); |
| 276 |
RealType molRad = molPos.length(); |
| 277 |
|
| 278 |
doLangevinForces = false; |
| 279 |
|
| 280 |
if (molRad > langevinBufferRadius_) { |
| 281 |
doLangevinForces = true; |
| 282 |
freezeMolecule = false; |
| 283 |
} |
| 284 |
if (molRad > frozenBufferRadius_) { |
| 285 |
doLangevinForces = false; |
| 286 |
freezeMolecule = true; |
| 287 |
} |
| 288 |
} |
| 289 |
|
| 290 |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
| 291 |
integrableObject = mol->nextIntegrableObject(j)) { |
| 292 |
|
| 293 |
if (freezeMolecule) |
| 294 |
fdf += integrableObject->freeze(); |
| 295 |
|
| 296 |
if (doLangevinForces) { |
| 297 |
vel =integrableObject->getVel(); |
| 298 |
mass = integrableObject->getMass(); |
| 299 |
if (integrableObject->isDirectional()){ |
| 300 |
//calculate angular velocity in lab frame |
| 301 |
Mat3x3d I = integrableObject->getI(); |
| 302 |
Vector3d angMom = integrableObject->getJ(); |
| 303 |
Vector3d omega; |
| 304 |
|
| 305 |
if (integrableObject->isLinear()) { |
| 306 |
int linearAxis = integrableObject->linearAxis(); |
| 307 |
int l = (linearAxis +1 )%3; |
| 308 |
int m = (linearAxis +2 )%3; |
| 309 |
omega[l] = angMom[l] /I(l, l); |
| 310 |
omega[m] = angMom[m] /I(m, m); |
| 311 |
|
| 312 |
} else { |
| 313 |
omega[0] = angMom[0] /I(0, 0); |
| 314 |
omega[1] = angMom[1] /I(1, 1); |
| 315 |
omega[2] = angMom[2] /I(2, 2); |
| 316 |
} |
| 317 |
|
| 318 |
//std::cerr << "I = " << I(0,0) << "\t" << I(1,1) << "\t" << I(2,2) << "\n\n"; |
| 319 |
|
| 320 |
//apply friction force and torque at center of resistance |
| 321 |
A = integrableObject->getA(); |
| 322 |
Atrans = A.transpose(); |
| 323 |
//std::cerr << "A = " << integrableObject->getA() << "\n"; |
| 324 |
//std::cerr << "Atrans = " << A.transpose() << "\n\n"; |
| 325 |
Vector3d rcr = Atrans * hydroProps_[index]->getCOR(); |
| 326 |
//std::cerr << "cor = " << hydroProps_[index]->getCOR() << "\n\n\n\n"; |
| 327 |
//std::cerr << "rcr = " << rcr << "\n\n"; |
| 328 |
Vector3d vcdLab = vel + cross(omega, rcr); |
| 329 |
|
| 330 |
//std::cerr << "velL = " << vel << "\n\n"; |
| 331 |
//std::cerr << "vcdL = " << vcdLab << "\n\n"; |
| 332 |
Vector3d vcdBody = A* vcdLab; |
| 333 |
//std::cerr << "vcdB = " << vcdBody << "\n\n"; |
| 334 |
Vector3d frictionForceBody = -(hydroProps_[index]->getXitt() * vcdBody + hydroProps_[index]->getXirt() * omega); |
| 335 |
|
| 336 |
//std::cerr << "xitt = " << hydroProps_[index]->getXitt() << "\n\n"; |
| 337 |
//std::cerr << "ffB = " << frictionForceBody << "\n\n"; |
| 338 |
Vector3d frictionForceLab = Atrans*frictionForceBody; |
| 339 |
//std::cerr << "ffL = " << frictionForceLab << "\n\n"; |
| 340 |
//std::cerr << "frc = " << integrableObject->getFrc() << "\n\n"; |
| 341 |
integrableObject->addFrc(frictionForceLab); |
| 342 |
//std::cerr << "frc = " << integrableObject->getFrc() << "\n\n"; |
| 343 |
//std::cerr << "ome = " << omega << "\n\n"; |
| 344 |
Vector3d frictionTorqueBody = - (hydroProps_[index]->getXitr() * vcdBody + hydroProps_[index]->getXirr() * omega); |
| 345 |
//std::cerr << "ftB = " << frictionTorqueBody << "\n\n"; |
| 346 |
Vector3d frictionTorqueLab = Atrans*frictionTorqueBody; |
| 347 |
//std::cerr << "ftL = " << frictionTorqueLab << "\n\n"; |
| 348 |
//std::cerr << "ftL2 = " << frictionTorqueLab+cross(rcr,frictionForceLab) << "\n\n"; |
| 349 |
//std::cerr << "trq = " << integrableObject->getTrq() << "\n\n"; |
| 350 |
integrableObject->addTrq(frictionTorqueLab+ cross(rcr, frictionForceLab)); |
| 351 |
//std::cerr << "trq = " << integrableObject->getTrq() << "\n\n"; |
| 352 |
|
| 353 |
//apply random force and torque at center of resistance |
| 354 |
Vector3d randomForceBody; |
| 355 |
Vector3d randomTorqueBody; |
| 356 |
genRandomForceAndTorque(randomForceBody, randomTorqueBody, index, variance_); |
| 357 |
//std::cerr << "rfB = " << randomForceBody << "\n\n"; |
| 358 |
//std::cerr << "rtB = " << randomTorqueBody << "\n\n"; |
| 359 |
Vector3d randomForceLab = Atrans*randomForceBody; |
| 360 |
Vector3d randomTorqueLab = Atrans* randomTorqueBody; |
| 361 |
integrableObject->addFrc(randomForceLab); |
| 362 |
//std::cerr << "rfL = " << randomForceLab << "\n\n"; |
| 363 |
//std::cerr << "rtL = " << randomTorqueLab << "\n\n"; |
| 364 |
//std::cerr << "rtL2 = " << randomTorqueLab + cross(rcr, randomForceLab) << "\n\n"; |
| 365 |
integrableObject->addTrq(randomTorqueLab + cross(rcr, randomForceLab )); |
| 366 |
|
| 367 |
} else { |
| 368 |
//spherical atom |
| 369 |
Vector3d frictionForce = -(hydroProps_[index]->getXitt() * vel); |
| 370 |
//std::cerr << "xitt = " << hydroProps_[index]->getXitt() << "\n\n"; |
| 371 |
Vector3d randomForce; |
| 372 |
Vector3d randomTorque; |
| 373 |
genRandomForceAndTorque(randomForce, randomTorque, index, variance_); |
| 374 |
|
| 375 |
integrableObject->addFrc(frictionForce+randomForce); |
| 376 |
} |
| 377 |
} |
| 378 |
|
| 379 |
++index; |
| 380 |
|
| 381 |
} |
| 382 |
} |
| 383 |
|
| 384 |
info_->setFdf(fdf); |
| 385 |
veloMunge->removeComDrift(); |
| 386 |
// Remove angular drift if we are not using periodic boundary conditions. |
| 387 |
if(!simParams->getUsePeriodicBoundaryConditions()) |
| 388 |
veloMunge->removeAngularDrift(); |
| 389 |
|
| 390 |
ForceManager::postCalculation(needStress); |
| 391 |
} |
| 392 |
|
| 393 |
void LDForceManager::genRandomForceAndTorque(Vector3d& force, Vector3d& torque, unsigned int index, RealType variance) { |
| 394 |
|
| 395 |
|
| 396 |
Vector<RealType, 6> Z; |
| 397 |
Vector<RealType, 6> generalForce; |
| 398 |
|
| 399 |
Z[0] = randNumGen_.randNorm(0, variance); |
| 400 |
Z[1] = randNumGen_.randNorm(0, variance); |
| 401 |
Z[2] = randNumGen_.randNorm(0, variance); |
| 402 |
//Z[3] = randNumGen_.randNorm(0, variance)*(2.0*M_PI); |
| 403 |
//Z[4] = randNumGen_.randNorm(0, variance)*(2.0*M_PI); |
| 404 |
//Z[5] = randNumGen_.randNorm(0, variance)*(2.0*M_PI); |
| 405 |
Z[3] = randNumGen_.randNorm(0, variance); |
| 406 |
Z[4] = randNumGen_.randNorm(0, variance); |
| 407 |
Z[5] = randNumGen_.randNorm(0, variance); |
| 408 |
|
| 409 |
|
| 410 |
generalForce = hydroProps_[index]->getS()*Z; |
| 411 |
|
| 412 |
force[0] = generalForce[0]; |
| 413 |
force[1] = generalForce[1]; |
| 414 |
force[2] = generalForce[2]; |
| 415 |
torque[0] = generalForce[3]; |
| 416 |
torque[1] = generalForce[4]; |
| 417 |
torque[2] = generalForce[5]; |
| 418 |
|
| 419 |
} |
| 420 |
|
| 421 |
} |