--- trunk/src/integrators/DLM.cpp 2005/01/12 22:41:40 246 +++ trunk/src/integrators/DLM.cpp 2009/04/23 18:31:05 1339 @@ -1,4 +1,4 @@ - /* +/* * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. * * The University of Notre Dame grants you ("Licensee") a @@ -43,9 +43,9 @@ namespace oopse { namespace oopse { -void DLM::doRotate(StuntDouble* sd, Vector3d& ji, double dt) { - double dt2 = 0.5 * dt; - double angle; + void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) { + RealType dt2 = 0.5 * dt; + RealType angle; RotMat3x3d A = sd->getA(); Mat3x3d I = sd->getI(); @@ -53,54 +53,54 @@ void DLM::doRotate(StuntDouble* sd, Vector3d& ji, doub // use the angular velocities to propagate the rotation matrix a full time step if (sd->isLinear()) { - int i = sd->linearAxis(); - int j = (i+1)%3; - int k = (i+2)%3; + int i = sd->linearAxis(); + int j = (i+1)%3; + int k = (i+2)%3; - angle = dt2 * ji[j] / I(j, j); - rotateStep( k, i, angle, ji, A ); + angle = dt2 * ji[j] / I(j, j); + rotateStep( k, i, angle, ji, A ); - angle = dt * ji[k] / I(k, k); - rotateStep( i, j, angle, ji, A); + angle = dt * ji[k] / I(k, k); + rotateStep( i, j, angle, ji, A); - angle = dt2 * ji[j] / I(j, j); - rotateStep( k, i, angle, ji, A ); + angle = dt2 * ji[j] / I(j, j); + rotateStep( k, i, angle, ji, A ); } else { - // rotate about the x-axis - angle = dt2 * ji[0] / I(0, 0); - rotateStep( 1, 2, angle, ji, A ); + // rotate about the x-axis + angle = dt2 * ji[0] / I(0, 0); + rotateStep( 1, 2, angle, ji, A ); - // rotate about the y-axis - angle = dt2 * ji[1] / I(1, 1); - rotateStep( 2, 0, angle, ji, A ); + // rotate about the y-axis + angle = dt2 * ji[1] / I(1, 1); + rotateStep( 2, 0, angle, ji, A ); - // rotate about the z-axis - angle = dt * ji[2] / I(2, 2); - sd->addZangle(angle); - rotateStep( 0, 1, angle, ji, A); + // rotate about the z-axis + angle = dt * ji[2] / I(2, 2); + sd->addZangle(angle); + rotateStep( 0, 1, angle, ji, A); - // rotate about the y-axis - angle = dt2 * ji[1] / I(1, 1); - rotateStep( 2, 0, angle, ji, A ); + // rotate about the y-axis + angle = dt2 * ji[1] / I(1, 1); + rotateStep( 2, 0, angle, ji, A ); - // rotate about the x-axis - angle = dt2 * ji[0] / I(0, 0); - rotateStep( 1, 2, angle, ji, A ); + // rotate about the x-axis + angle = dt2 * ji[0] / I(0, 0); + rotateStep( 1, 2, angle, ji, A ); } sd->setA( A ); -} + } -void DLM::rotateStep(int axes1, int axes2, double angle, Vector3d& ji, RotMat3x3d& A) { + void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) { - double sinAngle; - double cosAngle; - double angleSqr; - double angleSqrOver4; - double top, bottom; + RealType sinAngle; + RealType cosAngle; + RealType angleSqr; + RealType angleSqrOver4; + RealType top, bottom; RotMat3x3d tempA(A); // initialize the tempA Vector3d tempJ(0.0); @@ -117,6 +117,9 @@ void DLM::rotateStep(int axes1, int axes2, double angl cosAngle = top / bottom; sinAngle = angle / bottom; + // or don't use the small angle approximation: + //cosAngle = cos(angle); + //sinAngle = sin(angle); rot(axes1, axes1) = cosAngle; rot(axes2, axes2) = cosAngle; @@ -126,13 +129,28 @@ void DLM::rotateStep(int axes1, int axes2, double angl // rotate the momentum acoording to: ji[] = rot[][] * ji[] ji = rot * ji; - // rotate the Rotation matrix acording to: - // A[][] = A[][] * transpose(rot[][]) - // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) + // This code comes from converting an algorithm detailed in + // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber, + // Leimkuhler and McLachlan (DLM) for use in our code. + // In Appendix A, the DLM paper has the change to the rotation + // matrix as: Q = Q * rot.transpose(), but our rotation matrix + // A is actually equivalent to Q.transpose(). This fact can be + // seen on page 5849 of the DLM paper where a lab frame + // dipole \mu_i(t) is expressed in terms of a body-fixed + // reference orientation, \bar{\mu_i} and the rotation matrix, Q: + // \mu_i(t) = Q * \bar{\mu_i} + // Our code computes lab frame vectors from body-fixed reference + // vectors using: + // v_{lab} = A.transpose() * v_{body} + // (See StuntDouble.hpp for confirmation of this fact). + // + // So, using the identity: + // (A * B).transpose() = B.transpose() * A.transpose(), we + // get the equivalent of Q = Q * rot.transpose() for our code to be: - A = rot * A; //? A = A* rot.transpose(); + A = rot * A; -} + } }