--- trunk/src/integrators/DLM.cpp 2006/05/17 21:51:42 963 +++ trunk/src/integrators/DLM.cpp 2013/06/16 15:15:42 1879 @@ -6,19 +6,10 @@ * redistribute this software in source and binary code form, provided * that the following conditions are met: * - * 1. Acknowledgement of the program authors must be made in any - * publication of scientific results based in part on use of the - * program. An acceptable form of acknowledgement is citation of - * the article in which the program was described (Matthew - * A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher - * J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented - * Parallel Simulation Engine for Molecular Dynamics," - * J. Comput. Chem. 26, pp. 252-271 (2005)) - * - * 2. Redistributions of source code must retain the above copyright + * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - * 3. Redistributions in binary form must reproduce the above copyright + * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the * distribution. @@ -37,11 +28,21 @@ * arising out of the use of or inability to use software, even if the * University of Notre Dame has been advised of the possibility of * such damages. + * + * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your + * research, please cite the appropriate papers when you publish your + * work. Good starting points are: + * + * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). + * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). + * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). + * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). + * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). */ #include "DLM.hpp" -namespace oopse { +namespace OpenMD { void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) { RealType dt2 = 0.5 * dt; @@ -77,7 +78,6 @@ namespace oopse { // rotate about the z-axis angle = dt * ji[2] / I(2, 2); - sd->addZangle(angle); rotateStep( 0, 1, angle, ji, A); // rotate about the y-axis @@ -108,16 +108,19 @@ namespace oopse { RotMat3x3d rot = RotMat3x3d::identity(); // initalize rot as a unit matrix // use a small angle aproximation for sin and cosine + + angleSqr = angle * angle; + angleSqrOver4 = angleSqr / 4.0; + top = 1.0 - angleSqrOver4; + bottom = 1.0 + angleSqrOver4; - //angleSqr = angle * angle; - //angleSqrOver4 = angleSqr / 4.0; - //top = 1.0 - angleSqrOver4; - //bottom = 1.0 + angleSqrOver4; + cosAngle = top / bottom; + sinAngle = angle / bottom; + + // or don't use the small angle approximation: + //cosAngle = cos(angle); + //sinAngle = sin(angle); - //cosAngle = top / bottom; - //sinAngle = angle / bottom; - cosAngle = cos(angle); - sinAngle = sin(angle); rot(axes1, axes1) = cosAngle; rot(axes2, axes2) = cosAngle; @@ -127,11 +130,26 @@ namespace oopse { // rotate the momentum acoording to: ji[] = rot[][] * ji[] ji = rot * ji; - // rotate the Rotation matrix acording to: - // A[][] = A[][] * transpose(rot[][]) - // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) + // This code comes from converting an algorithm detailed in + // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber, + // Leimkuhler and McLachlan (DLM) for use in our code. + // In Appendix A, the DLM paper has the change to the rotation + // matrix as: Q = Q * rot.transpose(), but our rotation matrix + // A is actually equivalent to Q.transpose(). This fact can be + // seen on page 5849 of the DLM paper where a lab frame + // dipole \mu_i(t) is expressed in terms of a body-fixed + // reference orientation, \bar{\mu_i} and the rotation matrix, Q: + // \mu_i(t) = Q * \bar{\mu_i} + // Our code computes lab frame vectors from body-fixed reference + // vectors using: + // v_{lab} = A.transpose() * v_{body} + // (See StuntDouble.hpp for confirmation of this fact). + // + // So, using the identity: + // (A * B).transpose() = B.transpose() * A.transpose(), we + // get the equivalent of Q = Q * rot.transpose() for our code to be: - A = rot * A; //? A = A* rot.transpose(); + A = rot * A; }