--- trunk/src/integrators/DLM.cpp 2006/05/17 21:51:42 963 +++ trunk/src/integrators/DLM.cpp 2009/04/23 18:31:05 1339 @@ -109,15 +109,17 @@ namespace oopse { // use a small angle aproximation for sin and cosine - //angleSqr = angle * angle; - //angleSqrOver4 = angleSqr / 4.0; - //top = 1.0 - angleSqrOver4; - //bottom = 1.0 + angleSqrOver4; + angleSqr = angle * angle; + angleSqrOver4 = angleSqr / 4.0; + top = 1.0 - angleSqrOver4; + bottom = 1.0 + angleSqrOver4; - //cosAngle = top / bottom; - //sinAngle = angle / bottom; - cosAngle = cos(angle); - sinAngle = sin(angle); + cosAngle = top / bottom; + sinAngle = angle / bottom; + + // or don't use the small angle approximation: + //cosAngle = cos(angle); + //sinAngle = sin(angle); rot(axes1, axes1) = cosAngle; rot(axes2, axes2) = cosAngle; @@ -127,11 +129,26 @@ namespace oopse { // rotate the momentum acoording to: ji[] = rot[][] * ji[] ji = rot * ji; - // rotate the Rotation matrix acording to: - // A[][] = A[][] * transpose(rot[][]) - // transpose(A[][]) = transpose(A[][]) * transpose(rot[][]) + // This code comes from converting an algorithm detailed in + // J. Chem. Phys. 107 (15), pp. 5840-5851 by Dullweber, + // Leimkuhler and McLachlan (DLM) for use in our code. + // In Appendix A, the DLM paper has the change to the rotation + // matrix as: Q = Q * rot.transpose(), but our rotation matrix + // A is actually equivalent to Q.transpose(). This fact can be + // seen on page 5849 of the DLM paper where a lab frame + // dipole \mu_i(t) is expressed in terms of a body-fixed + // reference orientation, \bar{\mu_i} and the rotation matrix, Q: + // \mu_i(t) = Q * \bar{\mu_i} + // Our code computes lab frame vectors from body-fixed reference + // vectors using: + // v_{lab} = A.transpose() * v_{body} + // (See StuntDouble.hpp for confirmation of this fact). + // + // So, using the identity: + // (A * B).transpose() = B.transpose() * A.transpose(), we + // get the equivalent of Q = Q * rot.transpose() for our code to be: - A = rot * A; //? A = A* rot.transpose(); + A = rot * A; }