1 |
< |
/* |
1 |
> |
/* |
2 |
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
* |
4 |
|
* The University of Notre Dame grants you ("Licensee") a |
43 |
|
|
44 |
|
namespace oopse { |
45 |
|
|
46 |
< |
void DLM::doRotate(StuntDouble* sd, Vector3d& ji, double dt) { |
47 |
< |
double dt2 = 0.5 * dt; |
48 |
< |
double angle; |
46 |
> |
void DLM::doRotate(StuntDouble* sd, Vector3d& ji, RealType dt) { |
47 |
> |
RealType dt2 = 0.5 * dt; |
48 |
> |
RealType angle; |
49 |
|
|
50 |
|
RotMat3x3d A = sd->getA(); |
51 |
|
Mat3x3d I = sd->getI(); |
53 |
|
// use the angular velocities to propagate the rotation matrix a full time step |
54 |
|
if (sd->isLinear()) { |
55 |
|
|
56 |
< |
int i = sd->linearAxis(); |
57 |
< |
int j = (i+1)%3; |
58 |
< |
int k = (i+2)%3; |
56 |
> |
int i = sd->linearAxis(); |
57 |
> |
int j = (i+1)%3; |
58 |
> |
int k = (i+2)%3; |
59 |
|
|
60 |
< |
angle = dt2 * ji[j] / I(j, j); |
61 |
< |
rotateStep( k, i, angle, ji, A ); |
60 |
> |
angle = dt2 * ji[j] / I(j, j); |
61 |
> |
rotateStep( k, i, angle, ji, A ); |
62 |
|
|
63 |
< |
angle = dt * ji[k] / I(k, k); |
64 |
< |
rotateStep( i, j, angle, ji, A); |
63 |
> |
angle = dt * ji[k] / I(k, k); |
64 |
> |
rotateStep( i, j, angle, ji, A); |
65 |
|
|
66 |
< |
angle = dt2 * ji[j] / I(j, j); |
67 |
< |
rotateStep( k, i, angle, ji, A ); |
66 |
> |
angle = dt2 * ji[j] / I(j, j); |
67 |
> |
rotateStep( k, i, angle, ji, A ); |
68 |
|
|
69 |
|
} else { |
70 |
< |
// rotate about the x-axis |
71 |
< |
angle = dt2 * ji[0] / I(0, 0); |
72 |
< |
rotateStep( 1, 2, angle, ji, A ); |
70 |
> |
// rotate about the x-axis |
71 |
> |
angle = dt2 * ji[0] / I(0, 0); |
72 |
> |
rotateStep( 1, 2, angle, ji, A ); |
73 |
|
|
74 |
< |
// rotate about the y-axis |
75 |
< |
angle = dt2 * ji[1] / I(1, 1); |
76 |
< |
rotateStep( 2, 0, angle, ji, A ); |
74 |
> |
// rotate about the y-axis |
75 |
> |
angle = dt2 * ji[1] / I(1, 1); |
76 |
> |
rotateStep( 2, 0, angle, ji, A ); |
77 |
|
|
78 |
< |
// rotate about the z-axis |
79 |
< |
angle = dt * ji[2] / I(2, 2); |
80 |
< |
sd->addZangle(angle); |
81 |
< |
rotateStep( 0, 1, angle, ji, A); |
78 |
> |
// rotate about the z-axis |
79 |
> |
angle = dt * ji[2] / I(2, 2); |
80 |
> |
sd->addZangle(angle); |
81 |
> |
rotateStep( 0, 1, angle, ji, A); |
82 |
|
|
83 |
< |
// rotate about the y-axis |
84 |
< |
angle = dt2 * ji[1] / I(1, 1); |
85 |
< |
rotateStep( 2, 0, angle, ji, A ); |
83 |
> |
// rotate about the y-axis |
84 |
> |
angle = dt2 * ji[1] / I(1, 1); |
85 |
> |
rotateStep( 2, 0, angle, ji, A ); |
86 |
|
|
87 |
< |
// rotate about the x-axis |
88 |
< |
angle = dt2 * ji[0] / I(0, 0); |
89 |
< |
rotateStep( 1, 2, angle, ji, A ); |
87 |
> |
// rotate about the x-axis |
88 |
> |
angle = dt2 * ji[0] / I(0, 0); |
89 |
> |
rotateStep( 1, 2, angle, ji, A ); |
90 |
|
|
91 |
|
} |
92 |
|
|
93 |
|
sd->setA( A ); |
94 |
< |
} |
94 |
> |
} |
95 |
|
|
96 |
|
|
97 |
< |
void DLM::rotateStep(int axes1, int axes2, double angle, Vector3d& ji, RotMat3x3d& A) { |
97 |
> |
void DLM::rotateStep(int axes1, int axes2, RealType angle, Vector3d& ji, RotMat3x3d& A) { |
98 |
|
|
99 |
< |
double sinAngle; |
100 |
< |
double cosAngle; |
101 |
< |
double angleSqr; |
102 |
< |
double angleSqrOver4; |
103 |
< |
double top, bottom; |
99 |
> |
RealType sinAngle; |
100 |
> |
RealType cosAngle; |
101 |
> |
RealType angleSqr; |
102 |
> |
RealType angleSqrOver4; |
103 |
> |
RealType top, bottom; |
104 |
|
|
105 |
|
RotMat3x3d tempA(A); // initialize the tempA |
106 |
|
Vector3d tempJ(0.0); |
133 |
|
|
134 |
|
A = rot * A; //? A = A* rot.transpose(); |
135 |
|
|
136 |
< |
} |
136 |
> |
} |
137 |
|
|
138 |
|
|
139 |
|
} |