1 |
gezelter |
956 |
/* |
2 |
|
|
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
|
|
* |
4 |
|
|
* The University of Notre Dame grants you ("Licensee") a |
5 |
|
|
* non-exclusive, royalty free, license to use, modify and |
6 |
|
|
* redistribute this software in source and binary code form, provided |
7 |
|
|
* that the following conditions are met: |
8 |
|
|
* |
9 |
gezelter |
1390 |
* 1. Redistributions of source code must retain the above copyright |
10 |
gezelter |
956 |
* notice, this list of conditions and the following disclaimer. |
11 |
|
|
* |
12 |
gezelter |
1390 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
gezelter |
956 |
* notice, this list of conditions and the following disclaimer in the |
14 |
|
|
* documentation and/or other materials provided with the |
15 |
|
|
* distribution. |
16 |
|
|
* |
17 |
|
|
* This software is provided "AS IS," without a warranty of any |
18 |
|
|
* kind. All express or implied conditions, representations and |
19 |
|
|
* warranties, including any implied warranty of merchantability, |
20 |
|
|
* fitness for a particular purpose or non-infringement, are hereby |
21 |
|
|
* excluded. The University of Notre Dame and its licensors shall not |
22 |
|
|
* be liable for any damages suffered by licensee as a result of |
23 |
|
|
* using, modifying or distributing the software or its |
24 |
|
|
* derivatives. In no event will the University of Notre Dame or its |
25 |
|
|
* licensors be liable for any lost revenue, profit or data, or for |
26 |
|
|
* direct, indirect, special, consequential, incidental or punitive |
27 |
|
|
* damages, however caused and regardless of the theory of liability, |
28 |
|
|
* arising out of the use of or inability to use software, even if the |
29 |
|
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
|
* such damages. |
31 |
gezelter |
1390 |
* |
32 |
|
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
|
* research, please cite the appropriate papers when you publish your |
34 |
|
|
* work. Good starting points are: |
35 |
|
|
* |
36 |
|
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
|
|
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
|
|
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
gezelter |
956 |
*/ |
41 |
|
|
|
42 |
|
|
#include "hydrodynamics/Ellipsoid.hpp" |
43 |
gezelter |
1390 |
#include "utils/PhysicalConstants.hpp" |
44 |
gezelter |
956 |
#include "math/LU.hpp" |
45 |
|
|
|
46 |
gezelter |
1390 |
namespace OpenMD { |
47 |
gezelter |
956 |
|
48 |
xsun |
1184 |
Ellipsoid::Ellipsoid(Vector3d origin, RealType rAxial, RealType rEquatorial, |
49 |
|
|
Mat3x3d rotMat) : origin_(origin), rAxial_(rAxial), |
50 |
|
|
rEquatorial_(rEquatorial), |
51 |
|
|
rotMat_(rotMat) { |
52 |
|
|
if (rAxial_ > rEquatorial_) { |
53 |
|
|
rMajor_ = rAxial_; |
54 |
|
|
rMinor_ = rEquatorial_; |
55 |
|
|
} else { |
56 |
|
|
rMajor_ = rEquatorial_; |
57 |
|
|
rMinor_ = rAxial_; |
58 |
|
|
} |
59 |
gezelter |
956 |
} |
60 |
xsun |
1184 |
|
61 |
gezelter |
956 |
bool Ellipsoid::isInterior(Vector3d pos) { |
62 |
|
|
Vector3d r = pos - origin_; |
63 |
|
|
Vector3d rbody = rotMat_ * r; |
64 |
xsun |
1184 |
|
65 |
|
|
RealType xoverb = rbody[0]/rEquatorial_; |
66 |
|
|
RealType yoverb = rbody[1]/rEquatorial_; |
67 |
|
|
RealType zovera = rbody[2]/rAxial_; |
68 |
gezelter |
956 |
|
69 |
|
|
bool result; |
70 |
xsun |
1184 |
if (xoverb*xoverb + yoverb*yoverb + zovera*zovera < 1) |
71 |
gezelter |
956 |
result = true; |
72 |
|
|
else |
73 |
|
|
result = false; |
74 |
|
|
|
75 |
|
|
return result; |
76 |
|
|
} |
77 |
|
|
|
78 |
|
|
std::pair<Vector3d, Vector3d> Ellipsoid::getBoundingBox() { |
79 |
|
|
|
80 |
|
|
std::pair<Vector3d, Vector3d> boundary; |
81 |
|
|
//make a cubic box |
82 |
xsun |
1184 |
RealType rad = rAxial_ > rEquatorial_ ? rAxial_ : rEquatorial_; |
83 |
gezelter |
956 |
Vector3d r(rad, rad, rad); |
84 |
|
|
boundary.first = origin_ - r; |
85 |
|
|
boundary.second = origin_ + r; |
86 |
|
|
return boundary; |
87 |
|
|
} |
88 |
|
|
|
89 |
xsun |
1184 |
HydroProp* Ellipsoid::getHydroProp(RealType viscosity, |
90 |
|
|
RealType temperature) { |
91 |
gezelter |
956 |
|
92 |
xsun |
1184 |
RealType a = rAxial_; |
93 |
|
|
RealType b = rEquatorial_; |
94 |
tim |
963 |
RealType a2 = a * a; |
95 |
xsun |
1184 |
RealType b2 = b * b; |
96 |
gezelter |
956 |
|
97 |
xsun |
1184 |
RealType p = a / b; |
98 |
tim |
963 |
RealType S; |
99 |
xsun |
1184 |
if (p > 1.0) { |
100 |
|
|
// Ellipsoid is prolate: |
101 |
gezelter |
956 |
S = 2.0/sqrt(a2 - b2) * log((a + sqrt(a2-b2))/b); |
102 |
xsun |
1184 |
} else { |
103 |
|
|
// Ellipsoid is oblate: |
104 |
gezelter |
956 |
S = 2.0/sqrt(b2 - a2) * atan(sqrt(b2-a2)/a); |
105 |
|
|
} |
106 |
|
|
|
107 |
xsun |
1184 |
RealType pi = NumericConstant::PI; |
108 |
|
|
RealType XittA = 16.0 * pi * viscosity * (a2 - b2) /((2.0*a2-b2)*S -2.0*a); |
109 |
|
|
RealType XittB = 32.0 * pi * viscosity * (a2 - b2) /((2.0*a2-3.0*b2)*S +2.0*a); |
110 |
|
|
RealType XirrA = 32.0/3.0 * pi * viscosity *(a2 - b2) * b2 /(2.0*a -b2*S); |
111 |
|
|
RealType XirrB = 32.0/3.0 * pi * viscosity *(a2*a2 - b2*b2)/((2.0*a2-b2)*S-2.0*a); |
112 |
gezelter |
956 |
|
113 |
|
|
|
114 |
gezelter |
981 |
Mat6x6d Xi, XiCopy, D; |
115 |
gezelter |
956 |
|
116 |
xsun |
1184 |
Xi(0,0) = XittB; |
117 |
|
|
Xi(1,1) = XittB; |
118 |
|
|
Xi(2,2) = XittA; |
119 |
|
|
Xi(3,3) = XirrB; |
120 |
|
|
Xi(4,4) = XirrB; |
121 |
|
|
Xi(5,5) = XirrA; |
122 |
|
|
|
123 |
gezelter |
1390 |
Xi *= PhysicalConstants::viscoConvert; |
124 |
gezelter |
956 |
|
125 |
gezelter |
981 |
XiCopy = Xi; |
126 |
|
|
invertMatrix(XiCopy, D); |
127 |
gezelter |
1390 |
RealType kt = PhysicalConstants::kb * temperature; // in kcal mol^-1 |
128 |
gezelter |
981 |
D *= kt; |
129 |
gezelter |
956 |
|
130 |
gezelter |
981 |
HydroProp* hprop = new HydroProp(V3Zero, Xi, D); |
131 |
gezelter |
956 |
|
132 |
gezelter |
981 |
return hprop; |
133 |
|
|
|
134 |
gezelter |
956 |
} |
135 |
|
|
} |