35 |
|
* |
36 |
|
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
|
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
|
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
|
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
< |
#include "FluctuatingChargePropagator.hpp" |
44 |
< |
#include "primitives/Molecule.hpp" |
45 |
< |
#include "utils/simError.h" |
46 |
< |
#include "utils/PhysicalConstants.hpp" |
43 |
> |
#include "flucq/FluctuatingChargePropagator.hpp" |
44 |
> |
#include "flucq/FluctuatingChargeObjectiveFunction.hpp" |
45 |
> |
#include "optimization/Constraint.hpp" |
46 |
> |
#include "optimization/Problem.hpp" |
47 |
> |
#include "optimization/EndCriteria.hpp" |
48 |
> |
#include "optimization/StatusFunction.hpp" |
49 |
> |
#include "optimization/OptimizationFactory.hpp" |
50 |
> |
|
51 |
|
#ifdef IS_MPI |
52 |
|
#include <mpi.h> |
53 |
|
#endif |
54 |
|
|
55 |
+ |
using namespace QuantLib; |
56 |
|
namespace OpenMD { |
57 |
|
|
58 |
< |
void FluctuatingChargePropagator::applyConstraints() { |
59 |
< |
if (!hasFlucQ_) return; |
58 |
> |
FluctuatingChargePropagator::FluctuatingChargePropagator(SimInfo* info) : |
59 |
> |
info_(info), hasFlucQ_(false), forceMan_(NULL), initialized_(false) { |
60 |
> |
|
61 |
> |
Globals* simParams = info_->getSimParams(); |
62 |
> |
fqParams_ = simParams->getFluctuatingChargeParameters(); |
63 |
> |
} |
64 |
|
|
65 |
+ |
FluctuatingChargePropagator::~FluctuatingChargePropagator() { |
66 |
+ |
} |
67 |
+ |
|
68 |
+ |
void FluctuatingChargePropagator::setForceManager(ForceManager* forceMan) { |
69 |
+ |
forceMan_ = forceMan; |
70 |
+ |
} |
71 |
+ |
|
72 |
+ |
void FluctuatingChargePropagator::initialize() { |
73 |
+ |
if (info_->usesFluctuatingCharges()) { |
74 |
+ |
if (info_->getNFluctuatingCharges() > 0) { |
75 |
+ |
hasFlucQ_ = true; |
76 |
+ |
fqConstraints_ = new FluctuatingChargeConstraints(info_); |
77 |
+ |
fqConstraints_->setConstrainRegions(fqParams_->getConstrainRegions()); |
78 |
+ |
} |
79 |
+ |
} |
80 |
+ |
|
81 |
+ |
if (!hasFlucQ_) { |
82 |
+ |
initialized_ = true; |
83 |
+ |
return; |
84 |
+ |
} |
85 |
+ |
|
86 |
|
SimInfo::MoleculeIterator i; |
87 |
|
Molecule::FluctuatingChargeIterator j; |
88 |
|
Molecule* mol; |
89 |
|
Atom* atom; |
90 |
|
|
91 |
< |
RealType totalFrc, totalMolFrc, constrainedFrc; |
91 |
> |
// For single-minima flucq, this ensures a net neutral system, but |
92 |
> |
// for multiple minima, this is no longer the right thing to do: |
93 |
> |
// |
94 |
> |
// for (mol = info_->beginMolecule(i); mol != NULL; |
95 |
> |
// mol = info_->nextMolecule(i)) { |
96 |
> |
// for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
97 |
> |
// atom = mol->nextFluctuatingCharge(j)) { |
98 |
> |
// atom->setFlucQPos(0.0); |
99 |
> |
// atom->setFlucQVel(0.0); |
100 |
> |
// } |
101 |
> |
// } |
102 |
> |
|
103 |
> |
FluctuatingChargeObjectiveFunction flucQobjf(info_, forceMan_, |
104 |
> |
fqConstraints_); |
105 |
|
|
106 |
< |
// accumulate the total system fluctuating charge forces |
107 |
< |
totalFrc = 0.0; |
106 |
> |
DynamicVector<RealType> initCoords = flucQobjf.setInitialCoords(); |
107 |
> |
Problem problem(flucQobjf, *(new NoConstraint()), *(new NoStatus()), |
108 |
> |
initCoords); |
109 |
|
|
110 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; |
67 |
< |
mol = info_->nextMolecule(i)) { |
110 |
> |
EndCriteria endCriteria(1000, 100, 1e-5, 1e-5, 1e-5); |
111 |
|
|
112 |
< |
for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
70 |
< |
atom = mol->nextFluctuatingCharge(j)) { |
71 |
< |
totalFrc += atom->getFlucQFrc(); |
72 |
< |
} |
112 |
> |
OptimizationMethod* minim = OptimizationFactory::getInstance()->createOptimization("SD", info_); |
113 |
|
|
114 |
< |
} |
114 |
> |
DumpStatusFunction dsf(info_); // we want a dump file written |
115 |
> |
// every iteration |
116 |
> |
minim->minimize(problem, endCriteria); |
117 |
> |
cerr << "back from minim\n"; |
118 |
> |
initialized_ = true; |
119 |
> |
} |
120 |
|
|
121 |
< |
#ifdef IS_MPI |
122 |
< |
// in parallel, we need to add up the contributions from all |
123 |
< |
// processors: |
124 |
< |
MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalFrc, 1, MPI::REALTYPE, |
80 |
< |
MPI::SUM); |
81 |
< |
#endif |
82 |
< |
|
83 |
< |
// divide by the total number of fluctuating charges: |
84 |
< |
totalFrc /= info_->getNFluctuatingCharges(); |
85 |
< |
|
86 |
< |
for (mol = info_->beginMolecule(i); mol != NULL; |
87 |
< |
mol = info_->nextMolecule(i)) { |
88 |
< |
|
89 |
< |
totalMolFrc = 0.0; |
90 |
< |
|
91 |
< |
// molecular constraints can be done with a second loop. |
92 |
< |
if (mol->constrainTotalCharge()) { |
93 |
< |
for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
94 |
< |
atom = mol->nextFluctuatingCharge(j)) { |
95 |
< |
totalMolFrc += atom->getFlucQFrc(); |
96 |
< |
} |
97 |
< |
totalMolFrc /= mol->getNFluctuatingCharges(); |
98 |
< |
} |
99 |
< |
|
100 |
< |
for (atom = mol->beginFluctuatingCharge(j); atom != NULL; |
101 |
< |
atom = mol->nextFluctuatingCharge(j)) { |
102 |
< |
constrainedFrc = atom->getFlucQFrc() - totalFrc - totalMolFrc; |
103 |
< |
atom->setFlucQFrc(constrainedFrc); |
104 |
< |
} |
105 |
< |
} |
121 |
> |
void FluctuatingChargePropagator::applyConstraints() { |
122 |
> |
if (!initialized_) initialize(); |
123 |
> |
if (!hasFlucQ_) return; |
124 |
> |
fqConstraints_->applyConstraints(); |
125 |
|
} |
126 |
|
} |