6 |
|
* redistribute this software in source and binary code form, provided |
7 |
|
* that the following conditions are met: |
8 |
|
* |
9 |
< |
* 1. Acknowledgement of the program authors must be made in any |
10 |
< |
* publication of scientific results based in part on use of the |
11 |
< |
* program. An acceptable form of acknowledgement is citation of |
12 |
< |
* the article in which the program was described (Matthew |
13 |
< |
* A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher |
14 |
< |
* J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented |
15 |
< |
* Parallel Simulation Engine for Molecular Dynamics," |
16 |
< |
* J. Comput. Chem. 26, pp. 252-271 (2005)) |
17 |
< |
* |
18 |
< |
* 2. Redistributions of source code must retain the above copyright |
9 |
> |
* 1. Redistributions of source code must retain the above copyright |
10 |
|
* notice, this list of conditions and the following disclaimer. |
11 |
|
* |
12 |
< |
* 3. Redistributions in binary form must reproduce the above copyright |
12 |
> |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
|
* notice, this list of conditions and the following disclaimer in the |
14 |
|
* documentation and/or other materials provided with the |
15 |
|
* distribution. |
28 |
|
* arising out of the use of or inability to use software, even if the |
29 |
|
* University of Notre Dame has been advised of the possibility of |
30 |
|
* such damages. |
31 |
+ |
* |
32 |
+ |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
+ |
* research, please cite the appropriate papers when you publish your |
34 |
+ |
* work. Good starting points are: |
35 |
+ |
* |
36 |
+ |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
+ |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
+ |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
+ |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
+ |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
|
*/ |
42 |
|
|
43 |
|
#include <cmath> |
44 |
|
#include "constraints/ZconstraintForceManager.hpp" |
45 |
|
#include "integrators/Integrator.hpp" |
46 |
|
#include "utils/simError.h" |
47 |
< |
#include "utils/OOPSEConstant.hpp" |
47 |
> |
#include "utils/PhysicalConstants.hpp" |
48 |
|
#include "utils/StringUtils.hpp" |
49 |
< |
namespace oopse { |
49 |
> |
#ifdef IS_MPI |
50 |
> |
#include <mpi.h> |
51 |
> |
#endif |
52 |
> |
|
53 |
> |
namespace OpenMD { |
54 |
|
ZconstraintForceManager::ZconstraintForceManager(SimInfo* info): ForceManager(info), infiniteTime(1e31) { |
55 |
|
currSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
56 |
|
Globals* simParam = info_->getSimParams(); |
82 |
|
zconsTol_ = 0.01; |
83 |
|
sprintf(painCave.errMsg, |
84 |
|
"ZConstraint Warning: Tolerance for z-constraint method is not specified.\n" |
85 |
< |
"\tOOPSE will use a default value of %f.\n" |
85 |
> |
"\tOpenMD will use a default value of %f.\n" |
86 |
|
"\tTo set the tolerance, use the zconsTol variable.\n", |
87 |
|
zconsTol_); |
88 |
|
painCave.isFatal = 0; |
116 |
|
|
117 |
|
//estimate the force constant of harmonical potential |
118 |
|
Mat3x3d hmat = currSnapshot_->getHmat(); |
119 |
< |
double halfOfLargestBox = std::max(hmat(0, 0), std::max(hmat(1, 1), hmat(2, 2))) /2; |
120 |
< |
double targetTemp; |
119 |
> |
RealType halfOfLargestBox = std::max(hmat(0, 0), std::max(hmat(1, 1), hmat(2, 2))) /2; |
120 |
> |
RealType targetTemp; |
121 |
|
if (simParam->haveTargetTemp()) { |
122 |
|
targetTemp = simParam->getTargetTemp(); |
123 |
|
} else { |
124 |
|
targetTemp = 298.0; |
125 |
|
} |
126 |
< |
double zforceConstant = OOPSEConstant::kb * targetTemp / (halfOfLargestBox * halfOfLargestBox); |
126 |
> |
RealType zforceConstant = PhysicalConstants::kb * targetTemp / (halfOfLargestBox * halfOfLargestBox); |
127 |
|
|
128 |
< |
int nZconstraints = simParam->getNZconstraints(); |
129 |
< |
ZconStamp** stamp = simParam->getZconStamp(); |
128 |
> |
int nZconstraints = simParam->getNZconsStamps(); |
129 |
> |
std::vector<ZConsStamp*> stamp = simParam->getZconsStamps(); |
130 |
|
// |
131 |
|
for (int i = 0; i < nZconstraints; i++){ |
132 |
|
|
153 |
|
update(); |
154 |
|
|
155 |
|
//calculate masss of unconstraint molecules in the whole system (never change during the simulation) |
156 |
< |
double totMassUnconsMols_local = 0.0; |
156 |
> |
RealType totMassUnconsMols_local = 0.0; |
157 |
|
std::vector<Molecule*>::iterator j; |
158 |
|
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
159 |
|
totMassUnconsMols_local += (*j)->getMass(); |
161 |
|
#ifndef IS_MPI |
162 |
|
totMassUnconsMols_ = totMassUnconsMols_local; |
163 |
|
#else |
164 |
< |
MPI_Allreduce(&totMassUnconsMols_local, &totMassUnconsMols_, 1, MPI_DOUBLE, |
164 |
> |
MPI_Allreduce(&totMassUnconsMols_local, &totMassUnconsMols_, 1, MPI_REALTYPE, |
165 |
|
MPI_SUM, MPI_COMM_WORLD); |
166 |
|
#endif |
167 |
|
|
199 |
|
zmol.param = i->second; |
200 |
|
zmol.cantPos = zmol.param.zTargetPos; /**@todo fixed me when zmol migrate, it is incorrect*/ |
201 |
|
Vector3d com = zmol.mol->getCom(); |
202 |
< |
double diff = fabs(zmol.param.zTargetPos - com[whichDirection]); |
202 |
> |
RealType diff = fabs(zmol.param.zTargetPos - com[whichDirection]); |
203 |
|
if (diff < zconsTol_) { |
204 |
|
fixedZMols_.push_back(zmol); |
205 |
|
} else { |
245 |
|
currZconsTime_ = currSnapshot_->getTime(); |
246 |
|
} |
247 |
|
|
248 |
< |
void ZconstraintForceManager::calcForces(bool needPotential, bool needStress){ |
249 |
< |
ForceManager::calcForces(needPotential, needStress); |
248 |
> |
void ZconstraintForceManager::calcForces(){ |
249 |
> |
ForceManager::calcForces(); |
250 |
|
|
251 |
|
if (usingZconsGap_){ |
252 |
|
updateZPos(); |
287 |
|
Vector3d vel; |
288 |
|
std::list<ZconstraintMol>::iterator i; |
289 |
|
Molecule* mol; |
290 |
< |
StuntDouble* integrableObject; |
290 |
> |
StuntDouble* sd; |
291 |
|
Molecule::IntegrableObjectIterator ii; |
292 |
|
|
293 |
|
//zero out the velocities of center of mass of fixed z-constrained molecules |
294 |
|
for(i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
295 |
+ |
|
296 |
|
mol = i->mol; |
297 |
|
comVel = mol->getComVel(); |
298 |
< |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
299 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
300 |
< |
vel = integrableObject->getVel(); |
298 |
> |
|
299 |
> |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
300 |
> |
sd = mol->nextIntegrableObject(ii)) { |
301 |
> |
|
302 |
> |
vel = sd->getVel(); |
303 |
|
vel[whichDirection] -= comVel[whichDirection]; |
304 |
< |
integrableObject->setVel(vel); |
304 |
> |
sd->setVel(vel); |
305 |
|
} |
306 |
|
} |
307 |
|
|
308 |
|
// calculate the vz of center of mass of moving molecules(include unconstrained molecules |
309 |
|
// and moving z-constrained molecules) |
310 |
< |
double pzMovingMols_local = 0.0; |
311 |
< |
double pzMovingMols; |
310 |
> |
RealType pzMovingMols_local = 0.0; |
311 |
> |
RealType pzMovingMols; |
312 |
|
|
313 |
|
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
314 |
|
mol = i->mol; |
326 |
|
#ifndef IS_MPI |
327 |
|
pzMovingMols = pzMovingMols_local; |
328 |
|
#else |
329 |
< |
MPI_Allreduce(&pzMovingMols_local, &pzMovingMols, 1, MPI_DOUBLE, |
329 |
> |
MPI_Allreduce(&pzMovingMols_local, &pzMovingMols, 1, MPI_REALTYPE, |
330 |
|
MPI_SUM, MPI_COMM_WORLD); |
331 |
|
#endif |
332 |
|
|
333 |
< |
double vzMovingMols = pzMovingMols / (totMassMovingZMols_ + totMassUnconsMols_); |
333 |
> |
RealType vzMovingMols = pzMovingMols / (totMassMovingZMols_ + totMassUnconsMols_); |
334 |
|
|
335 |
|
//modify the velocities of moving z-constrained molecuels |
336 |
|
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
337 |
+ |
|
338 |
|
mol = i->mol; |
330 |
– |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
331 |
– |
integrableObject = mol->nextIntegrableObject(ii)) { |
339 |
|
|
340 |
< |
vel = integrableObject->getVel(); |
340 |
> |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
341 |
> |
sd = mol->nextIntegrableObject(ii)) { |
342 |
> |
|
343 |
> |
vel = sd->getVel(); |
344 |
|
vel[whichDirection] -= vzMovingMols; |
345 |
< |
integrableObject->setVel(vel); |
345 |
> |
sd->setVel(vel); |
346 |
|
} |
347 |
|
} |
348 |
|
|
349 |
|
//modify the velocites of unconstrained molecules |
350 |
|
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
351 |
+ |
|
352 |
|
mol =*j; |
342 |
– |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
343 |
– |
integrableObject = mol->nextIntegrableObject(ii)) { |
353 |
|
|
354 |
< |
vel = integrableObject->getVel(); |
354 |
> |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
355 |
> |
sd = mol->nextIntegrableObject(ii)) { |
356 |
> |
|
357 |
> |
vel = sd->getVel(); |
358 |
|
vel[whichDirection] -= vzMovingMols; |
359 |
< |
integrableObject->setVel(vel); |
359 |
> |
sd->setVel(vel); |
360 |
|
} |
361 |
|
} |
362 |
|
|
364 |
|
|
365 |
|
|
366 |
|
void ZconstraintForceManager::doZconstraintForce(){ |
367 |
< |
double totalFZ; |
368 |
< |
double totalFZ_local; |
367 |
> |
RealType totalFZ; |
368 |
> |
RealType totalFZ_local; |
369 |
|
Vector3d com; |
370 |
|
Vector3d force(0.0); |
371 |
|
|
378 |
|
//calculate the total z-contrained force of fixed z-contrained molecules |
379 |
|
std::list<ZconstraintMol>::iterator i; |
380 |
|
Molecule* mol; |
381 |
< |
StuntDouble* integrableObject; |
381 |
> |
StuntDouble* sd; |
382 |
|
Molecule::IntegrableObjectIterator ii; |
383 |
|
|
384 |
|
for ( i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
385 |
+ |
|
386 |
|
mol = i->mol; |
387 |
|
i->fz = 0.0; |
375 |
– |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
376 |
– |
integrableObject = mol->nextIntegrableObject(ii)) { |
388 |
|
|
389 |
< |
force = integrableObject->getFrc(); |
389 |
> |
for( sd = mol->beginIntegrableObject(ii); sd != NULL; |
390 |
> |
sd = mol->nextIntegrableObject(ii)) { |
391 |
> |
|
392 |
> |
force = sd->getFrc(); |
393 |
|
i->fz += force[whichDirection]; |
394 |
|
} |
395 |
|
totalFZ_local += i->fz; |
397 |
|
|
398 |
|
//calculate total z-constraint force |
399 |
|
#ifdef IS_MPI |
400 |
< |
MPI_Allreduce(&totalFZ_local, &totalFZ, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
400 |
> |
MPI_Allreduce(&totalFZ_local, &totalFZ, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
401 |
|
#else |
402 |
|
totalFZ = totalFZ_local; |
403 |
|
#endif |
405 |
|
|
406 |
|
// apply negative to fixed z-constrained molecues; |
407 |
|
for ( i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
408 |
+ |
|
409 |
|
mol = i->mol; |
395 |
– |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
396 |
– |
integrableObject = mol->nextIntegrableObject(ii)) { |
410 |
|
|
411 |
< |
force[whichDirection] = -getZFOfFixedZMols(mol, integrableObject, i->fz); |
412 |
< |
integrableObject->addFrc(force); |
411 |
> |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
412 |
> |
sd = mol->nextIntegrableObject(ii)) { |
413 |
> |
|
414 |
> |
force[whichDirection] = -getZFOfFixedZMols(mol, sd, i->fz); |
415 |
> |
sd->addFrc(force); |
416 |
|
} |
417 |
|
} |
418 |
|
|
419 |
|
//modify the forces of moving z-constrained molecules |
420 |
|
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
421 |
+ |
|
422 |
|
mol = i->mol; |
406 |
– |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
407 |
– |
integrableObject = mol->nextIntegrableObject(ii)) { |
423 |
|
|
424 |
+ |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
425 |
+ |
sd = mol->nextIntegrableObject(ii)) { |
426 |
+ |
|
427 |
|
force[whichDirection] = -getZFOfMovingMols(mol,totalFZ); |
428 |
< |
integrableObject->addFrc(force); |
428 |
> |
sd->addFrc(force); |
429 |
|
} |
430 |
|
} |
431 |
|
|
432 |
|
//modify the forces of unconstrained molecules |
433 |
|
std::vector<Molecule*>::iterator j; |
434 |
|
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
435 |
+ |
|
436 |
|
mol =*j; |
418 |
– |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
419 |
– |
integrableObject = mol->nextIntegrableObject(ii)) { |
437 |
|
|
438 |
+ |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
439 |
+ |
sd = mol->nextIntegrableObject(ii)) { |
440 |
+ |
|
441 |
|
force[whichDirection] = -getZFOfMovingMols(mol, totalFZ); |
442 |
< |
integrableObject->addFrc(force); |
442 |
> |
sd->addFrc(force); |
443 |
|
} |
444 |
|
} |
445 |
|
|
447 |
|
|
448 |
|
|
449 |
|
void ZconstraintForceManager::doHarmonic(){ |
450 |
< |
double totalFZ; |
450 |
> |
RealType totalFZ; |
451 |
|
Vector3d force(0.0); |
452 |
|
Vector3d com; |
453 |
< |
double totalFZ_local = 0; |
453 |
> |
RealType totalFZ_local = 0; |
454 |
> |
RealType lrPot; |
455 |
|
std::list<ZconstraintMol>::iterator i; |
456 |
< |
StuntDouble* integrableObject; |
456 |
> |
StuntDouble* sd; |
457 |
|
Molecule::IntegrableObjectIterator ii; |
458 |
|
Molecule* mol; |
459 |
|
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
460 |
|
mol = i->mol; |
461 |
|
com = mol->getCom(); |
462 |
< |
double resPos = usingSMD_? i->cantPos : i->param.zTargetPos; |
463 |
< |
double diff = com[whichDirection] - resPos; |
464 |
< |
double harmonicU = 0.5 * i->param.kz * diff * diff; |
465 |
< |
currSnapshot_->statData[Stats::LONG_RANGE_POTENTIAL] += harmonicU; |
466 |
< |
double harmonicF = -i->param.kz * diff; |
462 |
> |
RealType resPos = usingSMD_? i->cantPos : i->param.zTargetPos; |
463 |
> |
RealType diff = com[whichDirection] - resPos; |
464 |
> |
RealType harmonicU = 0.5 * i->param.kz * diff * diff; |
465 |
> |
lrPot = currSnapshot_->getLongRangePotential(); |
466 |
> |
lrPot += harmonicU; |
467 |
> |
currSnapshot_->setLongRangePotential(lrPot); |
468 |
> |
RealType harmonicF = -i->param.kz * diff; |
469 |
|
totalFZ_local += harmonicF; |
470 |
|
|
471 |
|
//adjust force |
472 |
< |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
473 |
< |
integrableObject = mol->nextIntegrableObject(ii)) { |
472 |
> |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
473 |
> |
sd = mol->nextIntegrableObject(ii)) { |
474 |
|
|
475 |
< |
force[whichDirection] = getHFOfFixedZMols(mol, integrableObject, harmonicF); |
476 |
< |
integrableObject->addFrc(force); |
475 |
> |
force[whichDirection] = getHFOfFixedZMols(mol, sd, harmonicF); |
476 |
> |
sd->addFrc(force); |
477 |
|
} |
478 |
|
} |
479 |
|
|
480 |
|
#ifndef IS_MPI |
481 |
|
totalFZ = totalFZ_local; |
482 |
|
#else |
483 |
< |
MPI_Allreduce(&totalFZ_local, &totalFZ, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
483 |
> |
MPI_Allreduce(&totalFZ_local, &totalFZ, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
484 |
|
#endif |
485 |
|
|
486 |
|
//modify the forces of unconstrained molecules |
487 |
|
std::vector<Molecule*>::iterator j; |
488 |
|
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
489 |
+ |
|
490 |
|
mol = *j; |
467 |
– |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
468 |
– |
integrableObject = mol->nextIntegrableObject(ii)) { |
491 |
|
|
492 |
+ |
for(sd = mol->beginIntegrableObject(ii); sd != NULL; |
493 |
+ |
sd = mol->nextIntegrableObject(ii)) { |
494 |
+ |
|
495 |
|
force[whichDirection] = getHFOfUnconsMols(mol, totalFZ); |
496 |
< |
integrableObject->addFrc(force); |
496 |
> |
sd->addFrc(force); |
497 |
|
} |
498 |
|
} |
499 |
|
|
501 |
|
|
502 |
|
bool ZconstraintForceManager::checkZConsState(){ |
503 |
|
Vector3d com; |
504 |
< |
double diff; |
504 |
> |
RealType diff; |
505 |
|
int changed_local = 0; |
506 |
|
|
507 |
|
std::list<ZconstraintMol>::iterator i; |
591 |
|
|
592 |
|
void ZconstraintForceManager::calcTotalMassMovingZMols(){ |
593 |
|
|
594 |
< |
double totMassMovingZMols_local = 0.0; |
594 |
> |
RealType totMassMovingZMols_local = 0.0; |
595 |
|
std::list<ZconstraintMol>::iterator i; |
596 |
|
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
597 |
|
totMassMovingZMols_local += i->mol->getMass(); |
598 |
|
} |
599 |
|
|
600 |
|
#ifdef IS_MPI |
601 |
< |
MPI_Allreduce(&totMassMovingZMols_local, &totMassMovingZMols_, 1, MPI_DOUBLE, |
601 |
> |
MPI_Allreduce(&totMassMovingZMols_local, &totMassMovingZMols_, 1, MPI_REALTYPE, |
602 |
|
MPI_SUM, MPI_COMM_WORLD); |
603 |
|
#else |
604 |
|
totMassMovingZMols_ = totMassMovingZMols_local; |
606 |
|
|
607 |
|
} |
608 |
|
|
609 |
< |
double ZconstraintForceManager::getZFOfFixedZMols(Molecule* mol, StuntDouble* sd, double totalForce){ |
609 |
> |
RealType ZconstraintForceManager::getZFOfFixedZMols(Molecule* mol, StuntDouble* sd, RealType totalForce){ |
610 |
|
return totalForce * sd->getMass() / mol->getMass(); |
611 |
|
} |
612 |
|
|
613 |
< |
double ZconstraintForceManager::getZFOfMovingMols(Molecule* mol, double totalForce){ |
613 |
> |
RealType ZconstraintForceManager::getZFOfMovingMols(Molecule* mol, RealType totalForce){ |
614 |
|
return totalForce * mol->getMass() / (totMassUnconsMols_ + totMassMovingZMols_); |
615 |
|
} |
616 |
|
|
617 |
< |
double ZconstraintForceManager::getHFOfFixedZMols(Molecule* mol, StuntDouble*sd, double totalForce){ |
617 |
> |
RealType ZconstraintForceManager::getHFOfFixedZMols(Molecule* mol, StuntDouble*sd, RealType totalForce){ |
618 |
|
return totalForce * sd->getMass() / mol->getMass(); |
619 |
|
} |
620 |
|
|
621 |
< |
double ZconstraintForceManager::getHFOfUnconsMols(Molecule* mol, double totalForce){ |
621 |
> |
RealType ZconstraintForceManager::getHFOfUnconsMols(Molecule* mol, RealType totalForce){ |
622 |
|
return totalForce * mol->getMass() / totMassUnconsMols_; |
623 |
|
} |
624 |
|
|
625 |
|
void ZconstraintForceManager::updateZPos(){ |
626 |
< |
double curTime = currSnapshot_->getTime(); |
626 |
> |
RealType curTime = currSnapshot_->getTime(); |
627 |
|
std::list<ZconstraintMol>::iterator i; |
628 |
|
for ( i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
629 |
|
i->param.zTargetPos += zconsGap_; |
637 |
|
} |
638 |
|
} |
639 |
|
|
640 |
< |
double ZconstraintForceManager::getZTargetPos(int index){ |
641 |
< |
double zTargetPos; |
640 |
> |
RealType ZconstraintForceManager::getZTargetPos(int index){ |
641 |
> |
RealType zTargetPos; |
642 |
|
#ifndef IS_MPI |
643 |
|
Molecule* mol = info_->getMoleculeByGlobalIndex(index); |
644 |
|
assert(mol); |
646 |
|
zTargetPos = com[whichDirection]; |
647 |
|
#else |
648 |
|
int whicProc = info_->getMolToProc(index); |
649 |
< |
MPI_Bcast(&zTargetPos, 1, MPI_DOUBLE, whicProc, MPI_COMM_WORLD); |
649 |
> |
MPI_Bcast(&zTargetPos, 1, MPI_REALTYPE, whicProc, MPI_COMM_WORLD); |
650 |
|
#endif |
651 |
|
return zTargetPos; |
652 |
|
} |