1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
*/ |
41 |
|
42 |
#include <cmath> |
43 |
#include "constraints/ZconstraintForceManager.hpp" |
44 |
#include "integrators/Integrator.hpp" |
45 |
#include "utils/simError.h" |
46 |
#include "utils/PhysicalConstants.hpp" |
47 |
#include "utils/StringUtils.hpp" |
48 |
namespace OpenMD { |
49 |
ZconstraintForceManager::ZconstraintForceManager(SimInfo* info): ForceManager(info), infiniteTime(1e31) { |
50 |
currSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
51 |
Globals* simParam = info_->getSimParams(); |
52 |
|
53 |
if (simParam->haveDt()){ |
54 |
dt_ = simParam->getDt(); |
55 |
} else { |
56 |
sprintf(painCave.errMsg, |
57 |
"Integrator Error: dt is not set\n"); |
58 |
painCave.isFatal = 1; |
59 |
simError(); |
60 |
} |
61 |
|
62 |
if (simParam->haveZconsTime()){ |
63 |
zconsTime_ = simParam->getZconsTime(); |
64 |
} |
65 |
else{ |
66 |
sprintf(painCave.errMsg, |
67 |
"ZConstraint error: If you use a ZConstraint,\n" |
68 |
"\tyou must set zconsTime.\n"); |
69 |
painCave.isFatal = 1; |
70 |
simError(); |
71 |
} |
72 |
|
73 |
if (simParam->haveZconsTol()){ |
74 |
zconsTol_ = simParam->getZconsTol(); |
75 |
} |
76 |
else{ |
77 |
zconsTol_ = 0.01; |
78 |
sprintf(painCave.errMsg, |
79 |
"ZConstraint Warning: Tolerance for z-constraint method is not specified.\n" |
80 |
"\tOpenMD will use a default value of %f.\n" |
81 |
"\tTo set the tolerance, use the zconsTol variable.\n", |
82 |
zconsTol_); |
83 |
painCave.isFatal = 0; |
84 |
simError(); |
85 |
} |
86 |
|
87 |
//set zcons gap |
88 |
if (simParam->haveZconsGap()){ |
89 |
usingZconsGap_ = true; |
90 |
zconsGap_ = simParam->getZconsGap(); |
91 |
}else { |
92 |
usingZconsGap_ = false; |
93 |
zconsGap_ = 0.0; |
94 |
} |
95 |
|
96 |
//set zcons fixtime |
97 |
if (simParam->haveZconsFixtime()){ |
98 |
zconsFixingTime_ = simParam->getZconsFixtime(); |
99 |
} else { |
100 |
zconsFixingTime_ = infiniteTime; |
101 |
} |
102 |
|
103 |
//set zconsUsingSMD |
104 |
if (simParam->haveZconsUsingSMD()){ |
105 |
usingSMD_ = simParam->getZconsUsingSMD(); |
106 |
}else { |
107 |
usingSMD_ =false; |
108 |
} |
109 |
|
110 |
zconsOutput_ = getPrefix(info_->getFinalConfigFileName()) + ".fz"; |
111 |
|
112 |
//estimate the force constant of harmonical potential |
113 |
Mat3x3d hmat = currSnapshot_->getHmat(); |
114 |
RealType halfOfLargestBox = std::max(hmat(0, 0), std::max(hmat(1, 1), hmat(2, 2))) /2; |
115 |
RealType targetTemp; |
116 |
if (simParam->haveTargetTemp()) { |
117 |
targetTemp = simParam->getTargetTemp(); |
118 |
} else { |
119 |
targetTemp = 298.0; |
120 |
} |
121 |
RealType zforceConstant = PhysicalConstants::kb * targetTemp / (halfOfLargestBox * halfOfLargestBox); |
122 |
|
123 |
int nZconstraints = simParam->getNZconsStamps(); |
124 |
std::vector<ZConsStamp*> stamp = simParam->getZconsStamps(); |
125 |
// |
126 |
for (int i = 0; i < nZconstraints; i++){ |
127 |
|
128 |
ZconstraintParam param; |
129 |
int zmolIndex = stamp[i]->getMolIndex(); |
130 |
if (stamp[i]->haveZpos()) { |
131 |
param.zTargetPos = stamp[i]->getZpos(); |
132 |
} else { |
133 |
param.zTargetPos = getZTargetPos(zmolIndex); |
134 |
} |
135 |
|
136 |
param.kz = zforceConstant * stamp[i]->getKratio(); |
137 |
|
138 |
if (stamp[i]->haveCantVel()) { |
139 |
param.cantVel = stamp[i]->getCantVel(); |
140 |
} else { |
141 |
param.cantVel = 0.0; |
142 |
} |
143 |
|
144 |
allZMolIndices_.insert(std::make_pair(zmolIndex, param)); |
145 |
} |
146 |
|
147 |
//create fixedMols_, movingMols_ and unconsMols lists |
148 |
update(); |
149 |
|
150 |
//calculate masss of unconstraint molecules in the whole system (never change during the simulation) |
151 |
RealType totMassUnconsMols_local = 0.0; |
152 |
std::vector<Molecule*>::iterator j; |
153 |
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
154 |
totMassUnconsMols_local += (*j)->getMass(); |
155 |
} |
156 |
#ifndef IS_MPI |
157 |
totMassUnconsMols_ = totMassUnconsMols_local; |
158 |
#else |
159 |
MPI_Allreduce(&totMassUnconsMols_local, &totMassUnconsMols_, 1, MPI_REALTYPE, |
160 |
MPI_SUM, MPI_COMM_WORLD); |
161 |
#endif |
162 |
|
163 |
// creat zconsWriter |
164 |
fzOut = new ZConsWriter(info_, zconsOutput_.c_str()); |
165 |
|
166 |
if (!fzOut){ |
167 |
sprintf(painCave.errMsg, "Fail to create ZConsWriter\n"); |
168 |
painCave.isFatal = 1; |
169 |
simError(); |
170 |
} |
171 |
|
172 |
} |
173 |
|
174 |
ZconstraintForceManager::~ZconstraintForceManager(){ |
175 |
|
176 |
if (fzOut){ |
177 |
delete fzOut; |
178 |
} |
179 |
|
180 |
} |
181 |
|
182 |
void ZconstraintForceManager::update(){ |
183 |
fixedZMols_.clear(); |
184 |
movingZMols_.clear(); |
185 |
unzconsMols_.clear(); |
186 |
|
187 |
for (std::map<int, ZconstraintParam>::iterator i = allZMolIndices_.begin(); i != allZMolIndices_.end(); ++i) { |
188 |
#ifdef IS_MPI |
189 |
if (info_->getMolToProc(i->first) == worldRank) { |
190 |
#endif |
191 |
ZconstraintMol zmol; |
192 |
zmol.mol = info_->getMoleculeByGlobalIndex(i->first); |
193 |
assert(zmol.mol); |
194 |
zmol.param = i->second; |
195 |
zmol.cantPos = zmol.param.zTargetPos; /**@todo fixed me when zmol migrate, it is incorrect*/ |
196 |
Vector3d com = zmol.mol->getCom(); |
197 |
RealType diff = fabs(zmol.param.zTargetPos - com[whichDirection]); |
198 |
if (diff < zconsTol_) { |
199 |
fixedZMols_.push_back(zmol); |
200 |
} else { |
201 |
movingZMols_.push_back(zmol); |
202 |
} |
203 |
|
204 |
#ifdef IS_MPI |
205 |
} |
206 |
#endif |
207 |
} |
208 |
|
209 |
calcTotalMassMovingZMols(); |
210 |
|
211 |
std::set<int> zmolSet; |
212 |
for (std::list<ZconstraintMol>::iterator i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
213 |
zmolSet.insert(i->mol->getGlobalIndex()); |
214 |
} |
215 |
|
216 |
for (std::list<ZconstraintMol>::iterator i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
217 |
zmolSet.insert(i->mol->getGlobalIndex()); |
218 |
} |
219 |
|
220 |
SimInfo::MoleculeIterator mi; |
221 |
Molecule* mol; |
222 |
for(mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
223 |
if (zmolSet.find(mol->getGlobalIndex()) == zmolSet.end()) { |
224 |
unzconsMols_.push_back(mol); |
225 |
} |
226 |
} |
227 |
|
228 |
} |
229 |
|
230 |
bool ZconstraintForceManager::isZMol(Molecule* mol){ |
231 |
return allZMolIndices_.find(mol->getGlobalIndex()) == allZMolIndices_.end() ? false : true; |
232 |
} |
233 |
|
234 |
void ZconstraintForceManager::init(){ |
235 |
|
236 |
//zero out the velocities of center of mass of unconstrained molecules |
237 |
//and the velocities of center of mass of every single z-constrained molecueles |
238 |
zeroVelocity(); |
239 |
|
240 |
currZconsTime_ = currSnapshot_->getTime(); |
241 |
} |
242 |
|
243 |
void ZconstraintForceManager::calcForces(){ |
244 |
ForceManager::calcForces(); |
245 |
|
246 |
if (usingZconsGap_){ |
247 |
updateZPos(); |
248 |
} |
249 |
|
250 |
if (checkZConsState()){ |
251 |
zeroVelocity(); |
252 |
calcTotalMassMovingZMols(); |
253 |
} |
254 |
|
255 |
//do zconstraint force; |
256 |
if (haveFixedZMols()){ |
257 |
doZconstraintForce(); |
258 |
} |
259 |
|
260 |
//use external force to move the molecules to the specified positions |
261 |
if (haveMovingZMols()){ |
262 |
doHarmonic(); |
263 |
} |
264 |
|
265 |
//write out forces and current positions of z-constraint molecules |
266 |
if (currSnapshot_->getTime() >= currZconsTime_){ |
267 |
std::list<ZconstraintMol>::iterator i; |
268 |
Vector3d com; |
269 |
for(i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
270 |
com = i->mol->getCom(); |
271 |
i->zpos = com[whichDirection]; |
272 |
} |
273 |
|
274 |
fzOut->writeFZ(fixedZMols_); |
275 |
currZconsTime_ += zconsTime_; |
276 |
} |
277 |
} |
278 |
|
279 |
void ZconstraintForceManager::zeroVelocity(){ |
280 |
|
281 |
Vector3d comVel; |
282 |
Vector3d vel; |
283 |
std::list<ZconstraintMol>::iterator i; |
284 |
Molecule* mol; |
285 |
StuntDouble* integrableObject; |
286 |
Molecule::IntegrableObjectIterator ii; |
287 |
|
288 |
//zero out the velocities of center of mass of fixed z-constrained molecules |
289 |
for(i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
290 |
mol = i->mol; |
291 |
comVel = mol->getComVel(); |
292 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
293 |
integrableObject = mol->nextIntegrableObject(ii)) { |
294 |
vel = integrableObject->getVel(); |
295 |
vel[whichDirection] -= comVel[whichDirection]; |
296 |
integrableObject->setVel(vel); |
297 |
} |
298 |
} |
299 |
|
300 |
// calculate the vz of center of mass of moving molecules(include unconstrained molecules |
301 |
// and moving z-constrained molecules) |
302 |
RealType pzMovingMols_local = 0.0; |
303 |
RealType pzMovingMols; |
304 |
|
305 |
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
306 |
mol = i->mol; |
307 |
comVel = mol->getComVel(); |
308 |
pzMovingMols_local += mol->getMass() * comVel[whichDirection]; |
309 |
} |
310 |
|
311 |
std::vector<Molecule*>::iterator j; |
312 |
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
313 |
mol =*j; |
314 |
comVel = mol->getComVel(); |
315 |
pzMovingMols_local += mol->getMass() * comVel[whichDirection]; |
316 |
} |
317 |
|
318 |
#ifndef IS_MPI |
319 |
pzMovingMols = pzMovingMols_local; |
320 |
#else |
321 |
MPI_Allreduce(&pzMovingMols_local, &pzMovingMols, 1, MPI_REALTYPE, |
322 |
MPI_SUM, MPI_COMM_WORLD); |
323 |
#endif |
324 |
|
325 |
RealType vzMovingMols = pzMovingMols / (totMassMovingZMols_ + totMassUnconsMols_); |
326 |
|
327 |
//modify the velocities of moving z-constrained molecuels |
328 |
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
329 |
mol = i->mol; |
330 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
331 |
integrableObject = mol->nextIntegrableObject(ii)) { |
332 |
|
333 |
vel = integrableObject->getVel(); |
334 |
vel[whichDirection] -= vzMovingMols; |
335 |
integrableObject->setVel(vel); |
336 |
} |
337 |
} |
338 |
|
339 |
//modify the velocites of unconstrained molecules |
340 |
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
341 |
mol =*j; |
342 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
343 |
integrableObject = mol->nextIntegrableObject(ii)) { |
344 |
|
345 |
vel = integrableObject->getVel(); |
346 |
vel[whichDirection] -= vzMovingMols; |
347 |
integrableObject->setVel(vel); |
348 |
} |
349 |
} |
350 |
|
351 |
} |
352 |
|
353 |
|
354 |
void ZconstraintForceManager::doZconstraintForce(){ |
355 |
RealType totalFZ; |
356 |
RealType totalFZ_local; |
357 |
Vector3d com; |
358 |
Vector3d force(0.0); |
359 |
|
360 |
//constrain the molecules which do not reach the specified positions |
361 |
|
362 |
//Zero Out the force of z-contrained molecules |
363 |
totalFZ_local = 0; |
364 |
|
365 |
|
366 |
//calculate the total z-contrained force of fixed z-contrained molecules |
367 |
std::list<ZconstraintMol>::iterator i; |
368 |
Molecule* mol; |
369 |
StuntDouble* integrableObject; |
370 |
Molecule::IntegrableObjectIterator ii; |
371 |
|
372 |
for ( i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
373 |
mol = i->mol; |
374 |
i->fz = 0.0; |
375 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
376 |
integrableObject = mol->nextIntegrableObject(ii)) { |
377 |
|
378 |
force = integrableObject->getFrc(); |
379 |
i->fz += force[whichDirection]; |
380 |
} |
381 |
totalFZ_local += i->fz; |
382 |
} |
383 |
|
384 |
//calculate total z-constraint force |
385 |
#ifdef IS_MPI |
386 |
MPI_Allreduce(&totalFZ_local, &totalFZ, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
387 |
#else |
388 |
totalFZ = totalFZ_local; |
389 |
#endif |
390 |
|
391 |
|
392 |
// apply negative to fixed z-constrained molecues; |
393 |
for ( i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
394 |
mol = i->mol; |
395 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
396 |
integrableObject = mol->nextIntegrableObject(ii)) { |
397 |
|
398 |
force[whichDirection] = -getZFOfFixedZMols(mol, integrableObject, i->fz); |
399 |
integrableObject->addFrc(force); |
400 |
} |
401 |
} |
402 |
|
403 |
//modify the forces of moving z-constrained molecules |
404 |
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
405 |
mol = i->mol; |
406 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
407 |
integrableObject = mol->nextIntegrableObject(ii)) { |
408 |
|
409 |
force[whichDirection] = -getZFOfMovingMols(mol,totalFZ); |
410 |
integrableObject->addFrc(force); |
411 |
} |
412 |
} |
413 |
|
414 |
//modify the forces of unconstrained molecules |
415 |
std::vector<Molecule*>::iterator j; |
416 |
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
417 |
mol =*j; |
418 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
419 |
integrableObject = mol->nextIntegrableObject(ii)) { |
420 |
|
421 |
force[whichDirection] = -getZFOfMovingMols(mol, totalFZ); |
422 |
integrableObject->addFrc(force); |
423 |
} |
424 |
} |
425 |
|
426 |
} |
427 |
|
428 |
|
429 |
void ZconstraintForceManager::doHarmonic(){ |
430 |
RealType totalFZ; |
431 |
Vector3d force(0.0); |
432 |
Vector3d com; |
433 |
RealType totalFZ_local = 0; |
434 |
std::list<ZconstraintMol>::iterator i; |
435 |
StuntDouble* integrableObject; |
436 |
Molecule::IntegrableObjectIterator ii; |
437 |
Molecule* mol; |
438 |
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
439 |
mol = i->mol; |
440 |
com = mol->getCom(); |
441 |
RealType resPos = usingSMD_? i->cantPos : i->param.zTargetPos; |
442 |
RealType diff = com[whichDirection] - resPos; |
443 |
RealType harmonicU = 0.5 * i->param.kz * diff * diff; |
444 |
currSnapshot_->statData[Stats::LONG_RANGE_POTENTIAL] += harmonicU; |
445 |
RealType harmonicF = -i->param.kz * diff; |
446 |
totalFZ_local += harmonicF; |
447 |
|
448 |
//adjust force |
449 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
450 |
integrableObject = mol->nextIntegrableObject(ii)) { |
451 |
|
452 |
force[whichDirection] = getHFOfFixedZMols(mol, integrableObject, harmonicF); |
453 |
integrableObject->addFrc(force); |
454 |
} |
455 |
} |
456 |
|
457 |
#ifndef IS_MPI |
458 |
totalFZ = totalFZ_local; |
459 |
#else |
460 |
MPI_Allreduce(&totalFZ_local, &totalFZ, 1, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
461 |
#endif |
462 |
|
463 |
//modify the forces of unconstrained molecules |
464 |
std::vector<Molecule*>::iterator j; |
465 |
for ( j = unzconsMols_.begin(); j != unzconsMols_.end(); ++j) { |
466 |
mol = *j; |
467 |
for(integrableObject = mol->beginIntegrableObject(ii); integrableObject != NULL; |
468 |
integrableObject = mol->nextIntegrableObject(ii)) { |
469 |
|
470 |
force[whichDirection] = getHFOfUnconsMols(mol, totalFZ); |
471 |
integrableObject->addFrc(force); |
472 |
} |
473 |
} |
474 |
|
475 |
} |
476 |
|
477 |
bool ZconstraintForceManager::checkZConsState(){ |
478 |
Vector3d com; |
479 |
RealType diff; |
480 |
int changed_local = 0; |
481 |
|
482 |
std::list<ZconstraintMol>::iterator i; |
483 |
std::list<ZconstraintMol>::iterator j; |
484 |
|
485 |
std::list<ZconstraintMol> newMovingZMols; |
486 |
for ( i = fixedZMols_.begin(); i != fixedZMols_.end();) { |
487 |
com = i->mol->getCom(); |
488 |
diff = fabs(com[whichDirection] - i->param.zTargetPos); |
489 |
if (diff > zconsTol_) { |
490 |
if (usingZconsGap_) { |
491 |
i->endFixingTime = infiniteTime; |
492 |
} |
493 |
j = i++; |
494 |
newMovingZMols.push_back(*j); |
495 |
fixedZMols_.erase(j); |
496 |
|
497 |
changed_local = 1; |
498 |
}else { |
499 |
++i; |
500 |
} |
501 |
} |
502 |
|
503 |
std::list<ZconstraintMol> newFixedZMols; |
504 |
for ( i = movingZMols_.begin(); i != movingZMols_.end();) { |
505 |
com = i->mol->getCom(); |
506 |
diff = fabs(com[whichDirection] - i->param.zTargetPos); |
507 |
if (diff <= zconsTol_) { |
508 |
if (usingZconsGap_) { |
509 |
i->endFixingTime = currSnapshot_->getTime() + zconsFixingTime_; |
510 |
} |
511 |
//this moving zconstraint molecule is about to fixed |
512 |
//moved this molecule to |
513 |
j = i++; |
514 |
newFixedZMols.push_back(*j); |
515 |
movingZMols_.erase(j); |
516 |
changed_local = 1; |
517 |
}else { |
518 |
++i; |
519 |
} |
520 |
} |
521 |
|
522 |
//merge the lists |
523 |
fixedZMols_.insert(fixedZMols_.end(), newFixedZMols.begin(), newFixedZMols.end()); |
524 |
movingZMols_.insert(movingZMols_.end(), newMovingZMols.begin(), newMovingZMols.end()); |
525 |
|
526 |
int changed; |
527 |
#ifndef IS_MPI |
528 |
changed = changed_local; |
529 |
#else |
530 |
MPI_Allreduce(&changed_local, &changed, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD); |
531 |
#endif |
532 |
|
533 |
return (changed > 0); |
534 |
} |
535 |
|
536 |
bool ZconstraintForceManager::haveFixedZMols(){ |
537 |
int havingFixed; |
538 |
int havingFixed_local = fixedZMols_.empty() ? 0 : 1; |
539 |
|
540 |
#ifndef IS_MPI |
541 |
havingFixed = havingFixed_local; |
542 |
#else |
543 |
MPI_Allreduce(&havingFixed_local, &havingFixed, 1, MPI_INT, MPI_SUM, |
544 |
MPI_COMM_WORLD); |
545 |
#endif |
546 |
|
547 |
return havingFixed > 0; |
548 |
} |
549 |
|
550 |
|
551 |
bool ZconstraintForceManager::haveMovingZMols(){ |
552 |
int havingMoving_local; |
553 |
int havingMoving; |
554 |
|
555 |
havingMoving_local = movingZMols_.empty()? 0 : 1; |
556 |
|
557 |
#ifndef IS_MPI |
558 |
havingMoving = havingMoving_local; |
559 |
#else |
560 |
MPI_Allreduce(&havingMoving_local, &havingMoving, 1, MPI_INT, MPI_SUM, |
561 |
MPI_COMM_WORLD); |
562 |
#endif |
563 |
|
564 |
return havingMoving > 0; |
565 |
} |
566 |
|
567 |
void ZconstraintForceManager::calcTotalMassMovingZMols(){ |
568 |
|
569 |
RealType totMassMovingZMols_local = 0.0; |
570 |
std::list<ZconstraintMol>::iterator i; |
571 |
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
572 |
totMassMovingZMols_local += i->mol->getMass(); |
573 |
} |
574 |
|
575 |
#ifdef IS_MPI |
576 |
MPI_Allreduce(&totMassMovingZMols_local, &totMassMovingZMols_, 1, MPI_REALTYPE, |
577 |
MPI_SUM, MPI_COMM_WORLD); |
578 |
#else |
579 |
totMassMovingZMols_ = totMassMovingZMols_local; |
580 |
#endif |
581 |
|
582 |
} |
583 |
|
584 |
RealType ZconstraintForceManager::getZFOfFixedZMols(Molecule* mol, StuntDouble* sd, RealType totalForce){ |
585 |
return totalForce * sd->getMass() / mol->getMass(); |
586 |
} |
587 |
|
588 |
RealType ZconstraintForceManager::getZFOfMovingMols(Molecule* mol, RealType totalForce){ |
589 |
return totalForce * mol->getMass() / (totMassUnconsMols_ + totMassMovingZMols_); |
590 |
} |
591 |
|
592 |
RealType ZconstraintForceManager::getHFOfFixedZMols(Molecule* mol, StuntDouble*sd, RealType totalForce){ |
593 |
return totalForce * sd->getMass() / mol->getMass(); |
594 |
} |
595 |
|
596 |
RealType ZconstraintForceManager::getHFOfUnconsMols(Molecule* mol, RealType totalForce){ |
597 |
return totalForce * mol->getMass() / totMassUnconsMols_; |
598 |
} |
599 |
|
600 |
void ZconstraintForceManager::updateZPos(){ |
601 |
RealType curTime = currSnapshot_->getTime(); |
602 |
std::list<ZconstraintMol>::iterator i; |
603 |
for ( i = fixedZMols_.begin(); i != fixedZMols_.end(); ++i) { |
604 |
i->param.zTargetPos += zconsGap_; |
605 |
} |
606 |
} |
607 |
|
608 |
void ZconstraintForceManager::updateCantPos(){ |
609 |
std::list<ZconstraintMol>::iterator i; |
610 |
for ( i = movingZMols_.begin(); i != movingZMols_.end(); ++i) { |
611 |
i->cantPos += i->param.cantVel * dt_; |
612 |
} |
613 |
} |
614 |
|
615 |
RealType ZconstraintForceManager::getZTargetPos(int index){ |
616 |
RealType zTargetPos; |
617 |
#ifndef IS_MPI |
618 |
Molecule* mol = info_->getMoleculeByGlobalIndex(index); |
619 |
assert(mol); |
620 |
Vector3d com = mol->getCom(); |
621 |
zTargetPos = com[whichDirection]; |
622 |
#else |
623 |
int whicProc = info_->getMolToProc(index); |
624 |
MPI_Bcast(&zTargetPos, 1, MPI_REALTYPE, whicProc, MPI_COMM_WORLD); |
625 |
#endif |
626 |
return zTargetPos; |
627 |
} |
628 |
|
629 |
} |