1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "constraints/Rattle.hpp" |
44 |
#include "primitives/Molecule.hpp" |
45 |
#include "utils/simError.h" |
46 |
namespace OpenMD { |
47 |
|
48 |
Rattle::Rattle(SimInfo* info) : info_(info), maxConsIteration_(10), consTolerance_(1.0e-6), doRattle_(false) { |
49 |
|
50 |
if (info_->getNConstraints() > 0) |
51 |
doRattle_ = true; |
52 |
|
53 |
|
54 |
if (info_->getSimParams()->haveDt()) { |
55 |
dt_ = info_->getSimParams()->getDt(); |
56 |
} else { |
57 |
sprintf(painCave.errMsg, |
58 |
"Integrator Error: dt is not set\n"); |
59 |
painCave.isFatal = 1; |
60 |
simError(); |
61 |
} |
62 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
63 |
} |
64 |
|
65 |
void Rattle::constraintA() { |
66 |
if (!doRattle_) return; |
67 |
doConstraint(&Rattle::constraintPairA); |
68 |
} |
69 |
void Rattle::constraintB() { |
70 |
if (!doRattle_) return; |
71 |
doConstraint(&Rattle::constraintPairB); |
72 |
} |
73 |
|
74 |
void Rattle::doConstraint(ConstraintPairFuncPtr func) { |
75 |
if (!doRattle_) return; |
76 |
|
77 |
Molecule* mol; |
78 |
SimInfo::MoleculeIterator mi; |
79 |
ConstraintElem* consElem; |
80 |
Molecule::ConstraintElemIterator cei; |
81 |
ConstraintPair* consPair; |
82 |
Molecule::ConstraintPairIterator cpi; |
83 |
|
84 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
85 |
mol = info_->nextMolecule(mi)) { |
86 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; |
87 |
consElem = mol->nextConstraintElem(cei)) { |
88 |
consElem->setMoved(true); |
89 |
consElem->setMoving(false); |
90 |
} |
91 |
} |
92 |
|
93 |
//main loop of constraint algorithm |
94 |
bool done = false; |
95 |
int iteration = 0; |
96 |
while(!done && iteration < maxConsIteration_){ |
97 |
done = true; |
98 |
|
99 |
//loop over every constraint pair |
100 |
|
101 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
102 |
mol = info_->nextMolecule(mi)) { |
103 |
for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; |
104 |
consPair = mol->nextConstraintPair(cpi)) { |
105 |
|
106 |
|
107 |
//dispatch constraint algorithm |
108 |
if(consPair->isMoved()) { |
109 |
int exeStatus = (this->*func)(consPair); |
110 |
|
111 |
switch(exeStatus){ |
112 |
case consFail: |
113 |
sprintf(painCave.errMsg, |
114 |
"Constraint failure in Rattle::constrainA, " |
115 |
"Constraint Fail\n"); |
116 |
painCave.isFatal = 1; |
117 |
simError(); |
118 |
|
119 |
break; |
120 |
case consSuccess: |
121 |
// constrain the pair by moving two elements |
122 |
done = false; |
123 |
consPair->getConsElem1()->setMoving(true); |
124 |
consPair->getConsElem2()->setMoving(true); |
125 |
break; |
126 |
case consAlready: |
127 |
// current pair is already constrained, do not need to |
128 |
// move the elements |
129 |
break; |
130 |
default: |
131 |
sprintf(painCave.errMsg, "ConstraintAlgorithm::doConstraint() " |
132 |
"Error: unrecognized status"); |
133 |
painCave.isFatal = 1; |
134 |
simError(); |
135 |
break; |
136 |
} |
137 |
} |
138 |
} |
139 |
}//end for(iter->first()) |
140 |
|
141 |
|
142 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
143 |
mol = info_->nextMolecule(mi)) { |
144 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; |
145 |
consElem = mol->nextConstraintElem(cei)) { |
146 |
consElem->setMoved(consElem->getMoving()); |
147 |
consElem->setMoving(false); |
148 |
} |
149 |
} |
150 |
|
151 |
iteration++; |
152 |
}//end while |
153 |
|
154 |
if (!done){ |
155 |
sprintf(painCave.errMsg, |
156 |
"Constraint failure in Rattle::constrainA, " |
157 |
"too many iterations: %d\n", |
158 |
iteration); |
159 |
painCave.isFatal = 1; |
160 |
simError(); |
161 |
} |
162 |
} |
163 |
|
164 |
int Rattle::constraintPairA(ConstraintPair* consPair){ |
165 |
|
166 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
167 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
168 |
|
169 |
Vector3d posA = consElem1->getPos(); |
170 |
Vector3d posB = consElem2->getPos(); |
171 |
|
172 |
Vector3d pab = posA -posB; |
173 |
|
174 |
//periodic boundary condition |
175 |
|
176 |
currentSnapshot_->wrapVector(pab); |
177 |
|
178 |
RealType pabsq = pab.lengthSquare(); |
179 |
|
180 |
RealType rabsq = consPair->getConsDistSquare(); |
181 |
RealType diffsq = rabsq - pabsq; |
182 |
|
183 |
// the original rattle code from alan tidesley |
184 |
if (fabs(diffsq) > (consTolerance_ * rabsq * 2)){ |
185 |
|
186 |
Vector3d oldPosA = consElem1->getPrevPos(); |
187 |
Vector3d oldPosB = consElem2->getPrevPos(); |
188 |
|
189 |
Vector3d rab = oldPosA - oldPosB; |
190 |
|
191 |
currentSnapshot_->wrapVector(rab); |
192 |
|
193 |
RealType rpab = dot(rab, pab); |
194 |
RealType rpabsq = rpab * rpab; |
195 |
|
196 |
if (rpabsq < (rabsq * -diffsq)){ |
197 |
return consFail; |
198 |
} |
199 |
|
200 |
RealType rma = 1.0 / consElem1->getMass(); |
201 |
RealType rmb = 1.0 / consElem2->getMass(); |
202 |
|
203 |
RealType gab = diffsq / (2.0 * (rma + rmb) * rpab); |
204 |
|
205 |
Vector3d delta = rab * gab; |
206 |
|
207 |
//set atom1's position |
208 |
posA += rma * delta; |
209 |
consElem1->setPos(posA); |
210 |
|
211 |
//set atom2's position |
212 |
posB -= rmb * delta; |
213 |
consElem2->setPos(posB); |
214 |
|
215 |
delta /= dt_; |
216 |
|
217 |
//set atom1's velocity |
218 |
Vector3d velA = consElem1->getVel(); |
219 |
velA += rma * delta; |
220 |
consElem1->setVel(velA); |
221 |
|
222 |
//set atom2's velocity |
223 |
Vector3d velB = consElem2->getVel(); |
224 |
velB -= rmb * delta; |
225 |
consElem2->setVel(velB); |
226 |
|
227 |
// report the constraint force back to the constraint pair: |
228 |
consPair->setConstraintForce(gab); |
229 |
return consSuccess; |
230 |
} |
231 |
else |
232 |
return consAlready; |
233 |
|
234 |
} |
235 |
|
236 |
|
237 |
int Rattle::constraintPairB(ConstraintPair* consPair){ |
238 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
239 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
240 |
|
241 |
|
242 |
Vector3d velA = consElem1->getVel(); |
243 |
Vector3d velB = consElem2->getVel(); |
244 |
|
245 |
Vector3d dv = velA - velB; |
246 |
|
247 |
Vector3d posA = consElem1->getPos(); |
248 |
Vector3d posB = consElem2->getPos(); |
249 |
|
250 |
Vector3d rab = posA - posB; |
251 |
|
252 |
currentSnapshot_->wrapVector(rab); |
253 |
|
254 |
RealType rma = 1.0 / consElem1->getMass(); |
255 |
RealType rmb = 1.0 / consElem2->getMass(); |
256 |
|
257 |
RealType rvab = dot(rab, dv); |
258 |
|
259 |
RealType gab = -rvab / ((rma + rmb) * consPair->getConsDistSquare()); |
260 |
|
261 |
if (fabs(gab) > consTolerance_){ |
262 |
Vector3d delta = rab * gab; |
263 |
|
264 |
velA += rma * delta; |
265 |
consElem1->setVel(velA); |
266 |
|
267 |
velB -= rmb * delta; |
268 |
consElem2->setVel(velB); |
269 |
|
270 |
// report the constraint force back to the constraint pair: |
271 |
consPair->setConstraintForce(gab); |
272 |
return consSuccess; |
273 |
} |
274 |
else |
275 |
return consAlready; |
276 |
|
277 |
} |
278 |
|
279 |
} |