1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "constraints/Rattle.hpp" |
44 |
#include "primitives/Molecule.hpp" |
45 |
#include "utils/simError.h" |
46 |
namespace OpenMD { |
47 |
|
48 |
Rattle::Rattle(SimInfo* info) : info_(info), maxConsIteration_(10), consTolerance_(1.0e-6), doRattle_(false) { |
49 |
|
50 |
if (info_->getNConstraints() > 0) |
51 |
doRattle_ = true; |
52 |
|
53 |
|
54 |
if (info_->getSimParams()->haveDt()) { |
55 |
dt_ = info_->getSimParams()->getDt(); |
56 |
} else { |
57 |
sprintf(painCave.errMsg, |
58 |
"Integrator Error: dt is not set\n"); |
59 |
painCave.isFatal = 1; |
60 |
simError(); |
61 |
} |
62 |
|
63 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
64 |
} |
65 |
|
66 |
void Rattle::constraintA() { |
67 |
if (!doRattle_) return; |
68 |
doConstraint(&Rattle::constraintPairA); |
69 |
} |
70 |
void Rattle::constraintB() { |
71 |
if (!doRattle_) return; |
72 |
doConstraint(&Rattle::constraintPairB); |
73 |
} |
74 |
|
75 |
void Rattle::doConstraint(ConstraintPairFuncPtr func) { |
76 |
if (!doRattle_) return; |
77 |
|
78 |
Molecule* mol; |
79 |
SimInfo::MoleculeIterator mi; |
80 |
ConstraintElem* consElem; |
81 |
Molecule::ConstraintElemIterator cei; |
82 |
ConstraintPair* consPair; |
83 |
Molecule::ConstraintPairIterator cpi; |
84 |
|
85 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
86 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; consElem = mol->nextConstraintElem(cei)) { |
87 |
consElem->setMoved(true); |
88 |
consElem->setMoving(false); |
89 |
} |
90 |
} |
91 |
|
92 |
//main loop of constraint algorithm |
93 |
bool done = false; |
94 |
int iteration = 0; |
95 |
while(!done && iteration < maxConsIteration_){ |
96 |
done = true; |
97 |
|
98 |
//loop over every constraint pair |
99 |
|
100 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
101 |
for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; consPair = mol->nextConstraintPair(cpi)) { |
102 |
|
103 |
|
104 |
//dispatch constraint algorithm |
105 |
if(consPair->isMoved()) { |
106 |
int exeStatus = (this->*func)(consPair); |
107 |
|
108 |
switch(exeStatus){ |
109 |
case consFail: |
110 |
sprintf(painCave.errMsg, |
111 |
"Constraint failure in Rattle::constrainA, Constraint Fail\n"); |
112 |
painCave.isFatal = 1; |
113 |
simError(); |
114 |
|
115 |
break; |
116 |
case consSuccess: |
117 |
//constrain the pair by moving two elements |
118 |
done = false; |
119 |
consPair->getConsElem1()->setMoving(true); |
120 |
consPair->getConsElem2()->setMoving(true); |
121 |
break; |
122 |
case consAlready: |
123 |
//current pair is already constrained, do not need to move the elements |
124 |
break; |
125 |
default: |
126 |
sprintf(painCave.errMsg, "ConstraintAlgorithm::doConstrain() Error: unrecognized status"); |
127 |
painCave.isFatal = 1; |
128 |
simError(); |
129 |
break; |
130 |
} |
131 |
} |
132 |
} |
133 |
}//end for(iter->first()) |
134 |
|
135 |
|
136 |
for (mol = info_->beginMolecule(mi); mol != NULL; mol = info_->nextMolecule(mi)) { |
137 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; consElem = mol->nextConstraintElem(cei)) { |
138 |
consElem->setMoved(consElem->getMoving()); |
139 |
consElem->setMoving(false); |
140 |
} |
141 |
} |
142 |
|
143 |
iteration++; |
144 |
}//end while |
145 |
|
146 |
if (!done){ |
147 |
sprintf(painCave.errMsg, |
148 |
"Constraint failure in Rattle::constrainA, too many iterations: %d\n", |
149 |
iteration); |
150 |
painCave.isFatal = 1; |
151 |
simError(); |
152 |
} |
153 |
} |
154 |
|
155 |
int Rattle::constraintPairA(ConstraintPair* consPair){ |
156 |
|
157 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
158 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
159 |
|
160 |
Vector3d posA = consElem1->getPos(); |
161 |
Vector3d posB = consElem2->getPos(); |
162 |
|
163 |
Vector3d pab = posA -posB; |
164 |
|
165 |
//periodic boundary condition |
166 |
|
167 |
currentSnapshot_->wrapVector(pab); |
168 |
|
169 |
RealType pabsq = pab.lengthSquare(); |
170 |
|
171 |
RealType rabsq = consPair->getConsDistSquare(); |
172 |
RealType diffsq = rabsq - pabsq; |
173 |
|
174 |
// the original rattle code from alan tidesley |
175 |
if (fabs(diffsq) > (consTolerance_ * rabsq * 2)){ |
176 |
|
177 |
Vector3d oldPosA = consElem1->getPrevPos(); |
178 |
Vector3d oldPosB = consElem2->getPrevPos(); |
179 |
|
180 |
Vector3d rab = oldPosA - oldPosB; |
181 |
|
182 |
currentSnapshot_->wrapVector(rab); |
183 |
|
184 |
RealType rpab = dot(rab, pab); |
185 |
RealType rpabsq = rpab * rpab; |
186 |
|
187 |
if (rpabsq < (rabsq * -diffsq)){ |
188 |
return consFail; |
189 |
} |
190 |
|
191 |
RealType rma = 1.0 / consElem1->getMass(); |
192 |
RealType rmb = 1.0 / consElem2->getMass(); |
193 |
|
194 |
RealType gab = diffsq / (2.0 * (rma + rmb) * rpab); |
195 |
|
196 |
Vector3d delta = rab * gab; |
197 |
|
198 |
//set atom1's position |
199 |
posA += rma * delta; |
200 |
consElem1->setPos(posA); |
201 |
|
202 |
//set atom2's position |
203 |
posB -= rmb * delta; |
204 |
consElem2->setPos(posB); |
205 |
|
206 |
delta /= dt_; |
207 |
|
208 |
//set atom1's velocity |
209 |
Vector3d velA = consElem1->getVel(); |
210 |
velA += rma * delta; |
211 |
consElem1->setVel(velA); |
212 |
|
213 |
//set atom2's velocity |
214 |
Vector3d velB = consElem2->getVel(); |
215 |
velB -= rmb * delta; |
216 |
consElem2->setVel(velB); |
217 |
|
218 |
return consSuccess; |
219 |
} |
220 |
else |
221 |
return consAlready; |
222 |
|
223 |
} |
224 |
|
225 |
|
226 |
int Rattle::constraintPairB(ConstraintPair* consPair){ |
227 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
228 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
229 |
|
230 |
|
231 |
Vector3d velA = consElem1->getVel(); |
232 |
Vector3d velB = consElem2->getVel(); |
233 |
|
234 |
Vector3d dv = velA - velB; |
235 |
|
236 |
Vector3d posA = consElem1->getPos(); |
237 |
Vector3d posB = consElem2->getPos(); |
238 |
|
239 |
Vector3d rab = posA - posB; |
240 |
|
241 |
currentSnapshot_->wrapVector(rab); |
242 |
|
243 |
RealType rma = 1.0 / consElem1->getMass(); |
244 |
RealType rmb = 1.0 / consElem2->getMass(); |
245 |
|
246 |
RealType rvab = dot(rab, dv); |
247 |
|
248 |
RealType gab = -rvab / ((rma + rmb) * consPair->getConsDistSquare()); |
249 |
|
250 |
if (fabs(gab) > consTolerance_){ |
251 |
Vector3d delta = rab * gab; |
252 |
|
253 |
velA += rma * delta; |
254 |
consElem1->setVel(velA); |
255 |
|
256 |
velB -= rmb * delta; |
257 |
consElem2->setVel(velB); |
258 |
|
259 |
return consSuccess; |
260 |
} |
261 |
else |
262 |
return consAlready; |
263 |
|
264 |
} |
265 |
|
266 |
} |