| 1 |
/* |
| 2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
| 3 |
* |
| 4 |
* The University of Notre Dame grants you ("Licensee") a |
| 5 |
* non-exclusive, royalty free, license to use, modify and |
| 6 |
* redistribute this software in source and binary code form, provided |
| 7 |
* that the following conditions are met: |
| 8 |
* |
| 9 |
* 1. Redistributions of source code must retain the above copyright |
| 10 |
* notice, this list of conditions and the following disclaimer. |
| 11 |
* |
| 12 |
* 2. Redistributions in binary form must reproduce the above copyright |
| 13 |
* notice, this list of conditions and the following disclaimer in the |
| 14 |
* documentation and/or other materials provided with the |
| 15 |
* distribution. |
| 16 |
* |
| 17 |
* This software is provided "AS IS," without a warranty of any |
| 18 |
* kind. All express or implied conditions, representations and |
| 19 |
* warranties, including any implied warranty of merchantability, |
| 20 |
* fitness for a particular purpose or non-infringement, are hereby |
| 21 |
* excluded. The University of Notre Dame and its licensors shall not |
| 22 |
* be liable for any damages suffered by licensee as a result of |
| 23 |
* using, modifying or distributing the software or its |
| 24 |
* derivatives. In no event will the University of Notre Dame or its |
| 25 |
* licensors be liable for any lost revenue, profit or data, or for |
| 26 |
* direct, indirect, special, consequential, incidental or punitive |
| 27 |
* damages, however caused and regardless of the theory of liability, |
| 28 |
* arising out of the use of or inability to use software, even if the |
| 29 |
* University of Notre Dame has been advised of the possibility of |
| 30 |
* such damages. |
| 31 |
* |
| 32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
| 33 |
* research, please cite the appropriate papers when you publish your |
| 34 |
* work. Good starting points are: |
| 35 |
* |
| 36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
| 37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
| 38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
| 39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
| 40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
| 41 |
*/ |
| 42 |
|
| 43 |
#include "constraints/Rattle.hpp" |
| 44 |
#include "primitives/Molecule.hpp" |
| 45 |
#include "utils/simError.h" |
| 46 |
namespace OpenMD { |
| 47 |
|
| 48 |
Rattle::Rattle(SimInfo* info) : info_(info), maxConsIteration_(10), |
| 49 |
consTolerance_(1.0e-6), doRattle_(false), |
| 50 |
currConstraintTime_(0.0) { |
| 51 |
|
| 52 |
if (info_->getNGlobalConstraints() > 0) |
| 53 |
doRattle_ = true; |
| 54 |
|
| 55 |
Globals* simParams = info_->getSimParams(); |
| 56 |
|
| 57 |
if (simParams->haveDt()) { |
| 58 |
dt_ = simParams->getDt(); |
| 59 |
} else { |
| 60 |
sprintf(painCave.errMsg, |
| 61 |
"Rattle Error: dt is not set\n"); |
| 62 |
painCave.isFatal = 1; |
| 63 |
simError(); |
| 64 |
} |
| 65 |
|
| 66 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
| 67 |
if (simParams->haveConstraintTime()){ |
| 68 |
constraintTime_ = simParams->getConstraintTime(); |
| 69 |
} else { |
| 70 |
constraintTime_ = simParams->getStatusTime(); |
| 71 |
} |
| 72 |
|
| 73 |
constraintOutputFile_ = getPrefix(info_->getFinalConfigFileName()) + |
| 74 |
".constraintForces"; |
| 75 |
|
| 76 |
// create ConstraintWriter |
| 77 |
constraintWriter_ = new ConstraintWriter(info_, |
| 78 |
constraintOutputFile_.c_str()); |
| 79 |
|
| 80 |
if (!constraintWriter_){ |
| 81 |
sprintf(painCave.errMsg, "Failed to create ConstraintWriter\n"); |
| 82 |
painCave.isFatal = 1; |
| 83 |
simError(); |
| 84 |
} |
| 85 |
} |
| 86 |
|
| 87 |
void Rattle::constraintA() { |
| 88 |
if (!doRattle_) return; |
| 89 |
doConstraint(&Rattle::constraintPairA); |
| 90 |
} |
| 91 |
void Rattle::constraintB() { |
| 92 |
if (!doRattle_) return; |
| 93 |
doConstraint(&Rattle::constraintPairB); |
| 94 |
|
| 95 |
if (currentSnapshot_->getTime() >= currConstraintTime_){ |
| 96 |
Molecule* mol; |
| 97 |
SimInfo::MoleculeIterator mi; |
| 98 |
ConstraintPair* consPair; |
| 99 |
Molecule::ConstraintPairIterator cpi; |
| 100 |
std::list<ConstraintPair*> constraints; |
| 101 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 102 |
mol = info_->nextMolecule(mi)) { |
| 103 |
for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; |
| 104 |
consPair = mol->nextConstraintPair(cpi)) { |
| 105 |
|
| 106 |
constraints.push_back(consPair); |
| 107 |
} |
| 108 |
} |
| 109 |
constraintWriter_->writeConstraintForces(constraints); |
| 110 |
currConstraintTime_ += constraintTime_; |
| 111 |
} |
| 112 |
} |
| 113 |
|
| 114 |
void Rattle::doConstraint(ConstraintPairFuncPtr func) { |
| 115 |
if (!doRattle_) return; |
| 116 |
|
| 117 |
Molecule* mol; |
| 118 |
SimInfo::MoleculeIterator mi; |
| 119 |
ConstraintElem* consElem; |
| 120 |
Molecule::ConstraintElemIterator cei; |
| 121 |
ConstraintPair* consPair; |
| 122 |
Molecule::ConstraintPairIterator cpi; |
| 123 |
|
| 124 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 125 |
mol = info_->nextMolecule(mi)) { |
| 126 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; |
| 127 |
consElem = mol->nextConstraintElem(cei)) { |
| 128 |
consElem->setMoved(true); |
| 129 |
consElem->setMoving(false); |
| 130 |
} |
| 131 |
} |
| 132 |
|
| 133 |
//main loop of constraint algorithm |
| 134 |
bool done = false; |
| 135 |
int iteration = 0; |
| 136 |
while(!done && iteration < maxConsIteration_){ |
| 137 |
done = true; |
| 138 |
|
| 139 |
//loop over every constraint pair |
| 140 |
|
| 141 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 142 |
mol = info_->nextMolecule(mi)) { |
| 143 |
for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; |
| 144 |
consPair = mol->nextConstraintPair(cpi)) { |
| 145 |
|
| 146 |
|
| 147 |
//dispatch constraint algorithm |
| 148 |
if(consPair->isMoved()) { |
| 149 |
int exeStatus = (this->*func)(consPair); |
| 150 |
|
| 151 |
switch(exeStatus){ |
| 152 |
case consFail: |
| 153 |
sprintf(painCave.errMsg, |
| 154 |
"Constraint failure in Rattle::constrainA, " |
| 155 |
"Constraint Fail\n"); |
| 156 |
painCave.isFatal = 1; |
| 157 |
simError(); |
| 158 |
|
| 159 |
break; |
| 160 |
case consSuccess: |
| 161 |
// constrain the pair by moving two elements |
| 162 |
done = false; |
| 163 |
consPair->getConsElem1()->setMoving(true); |
| 164 |
consPair->getConsElem2()->setMoving(true); |
| 165 |
break; |
| 166 |
case consAlready: |
| 167 |
// current pair is already constrained, do not need to |
| 168 |
// move the elements |
| 169 |
break; |
| 170 |
default: |
| 171 |
sprintf(painCave.errMsg, "ConstraintAlgorithm::doConstraint() " |
| 172 |
"Error: unrecognized status"); |
| 173 |
painCave.isFatal = 1; |
| 174 |
simError(); |
| 175 |
break; |
| 176 |
} |
| 177 |
} |
| 178 |
} |
| 179 |
}//end for(iter->first()) |
| 180 |
|
| 181 |
|
| 182 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
| 183 |
mol = info_->nextMolecule(mi)) { |
| 184 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; |
| 185 |
consElem = mol->nextConstraintElem(cei)) { |
| 186 |
consElem->setMoved(consElem->getMoving()); |
| 187 |
consElem->setMoving(false); |
| 188 |
} |
| 189 |
} |
| 190 |
|
| 191 |
iteration++; |
| 192 |
}//end while |
| 193 |
|
| 194 |
if (!done){ |
| 195 |
sprintf(painCave.errMsg, |
| 196 |
"Constraint failure in Rattle::constrainA, " |
| 197 |
"too many iterations: %d\n", |
| 198 |
iteration); |
| 199 |
painCave.isFatal = 1; |
| 200 |
simError(); |
| 201 |
} |
| 202 |
} |
| 203 |
|
| 204 |
int Rattle::constraintPairA(ConstraintPair* consPair){ |
| 205 |
|
| 206 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
| 207 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
| 208 |
|
| 209 |
Vector3d posA = consElem1->getPos(); |
| 210 |
Vector3d posB = consElem2->getPos(); |
| 211 |
|
| 212 |
Vector3d pab = posA -posB; |
| 213 |
|
| 214 |
//periodic boundary condition |
| 215 |
|
| 216 |
currentSnapshot_->wrapVector(pab); |
| 217 |
|
| 218 |
RealType pabsq = pab.lengthSquare(); |
| 219 |
|
| 220 |
RealType rabsq = consPair->getConsDistSquare(); |
| 221 |
RealType diffsq = rabsq - pabsq; |
| 222 |
|
| 223 |
// the original rattle code from alan tidesley |
| 224 |
if (fabs(diffsq) > (consTolerance_ * rabsq * 2)){ |
| 225 |
|
| 226 |
Vector3d oldPosA = consElem1->getPrevPos(); |
| 227 |
Vector3d oldPosB = consElem2->getPrevPos(); |
| 228 |
|
| 229 |
Vector3d rab = oldPosA - oldPosB; |
| 230 |
|
| 231 |
currentSnapshot_->wrapVector(rab); |
| 232 |
|
| 233 |
RealType rpab = dot(rab, pab); |
| 234 |
RealType rpabsq = rpab * rpab; |
| 235 |
|
| 236 |
if (rpabsq < (rabsq * -diffsq)){ |
| 237 |
return consFail; |
| 238 |
} |
| 239 |
|
| 240 |
RealType rma = 1.0 / consElem1->getMass(); |
| 241 |
RealType rmb = 1.0 / consElem2->getMass(); |
| 242 |
|
| 243 |
RealType gab = diffsq / (2.0 * (rma + rmb) * rpab); |
| 244 |
|
| 245 |
Vector3d delta = rab * gab; |
| 246 |
|
| 247 |
//set atom1's position |
| 248 |
posA += rma * delta; |
| 249 |
consElem1->setPos(posA); |
| 250 |
|
| 251 |
//set atom2's position |
| 252 |
posB -= rmb * delta; |
| 253 |
consElem2->setPos(posB); |
| 254 |
|
| 255 |
delta /= dt_; |
| 256 |
|
| 257 |
//set atom1's velocity |
| 258 |
Vector3d velA = consElem1->getVel(); |
| 259 |
velA += rma * delta; |
| 260 |
consElem1->setVel(velA); |
| 261 |
|
| 262 |
//set atom2's velocity |
| 263 |
Vector3d velB = consElem2->getVel(); |
| 264 |
velB -= rmb * delta; |
| 265 |
consElem2->setVel(velB); |
| 266 |
|
| 267 |
// report the constraint force back to the constraint pair: |
| 268 |
consPair->setConstraintForce(gab); |
| 269 |
return consSuccess; |
| 270 |
} |
| 271 |
else |
| 272 |
return consAlready; |
| 273 |
|
| 274 |
} |
| 275 |
|
| 276 |
|
| 277 |
int Rattle::constraintPairB(ConstraintPair* consPair){ |
| 278 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
| 279 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
| 280 |
|
| 281 |
|
| 282 |
Vector3d velA = consElem1->getVel(); |
| 283 |
Vector3d velB = consElem2->getVel(); |
| 284 |
|
| 285 |
Vector3d dv = velA - velB; |
| 286 |
|
| 287 |
Vector3d posA = consElem1->getPos(); |
| 288 |
Vector3d posB = consElem2->getPos(); |
| 289 |
|
| 290 |
Vector3d rab = posA - posB; |
| 291 |
|
| 292 |
currentSnapshot_->wrapVector(rab); |
| 293 |
|
| 294 |
RealType rma = 1.0 / consElem1->getMass(); |
| 295 |
RealType rmb = 1.0 / consElem2->getMass(); |
| 296 |
|
| 297 |
RealType rvab = dot(rab, dv); |
| 298 |
|
| 299 |
RealType gab = -rvab / ((rma + rmb) * consPair->getConsDistSquare()); |
| 300 |
|
| 301 |
if (fabs(gab) > consTolerance_){ |
| 302 |
Vector3d delta = rab * gab; |
| 303 |
|
| 304 |
velA += rma * delta; |
| 305 |
consElem1->setVel(velA); |
| 306 |
|
| 307 |
velB -= rmb * delta; |
| 308 |
consElem2->setVel(velB); |
| 309 |
|
| 310 |
// report the constraint force back to the constraint pair: |
| 311 |
consPair->setConstraintForce(gab); |
| 312 |
return consSuccess; |
| 313 |
} |
| 314 |
else |
| 315 |
return consAlready; |
| 316 |
|
| 317 |
} |
| 318 |
|
| 319 |
} |