1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#include "constraints/Rattle.hpp" |
44 |
#include "primitives/Molecule.hpp" |
45 |
#include "utils/simError.h" |
46 |
namespace OpenMD { |
47 |
|
48 |
Rattle::Rattle(SimInfo* info) : info_(info), maxConsIteration_(10), consTolerance_(1.0e-6), doRattle_(false) { |
49 |
|
50 |
if (info_->getNConstraints() > 0) |
51 |
doRattle_ = true; |
52 |
|
53 |
Globals* simParams = info_->getSimParams(); |
54 |
|
55 |
if (simParams->haveDt()) { |
56 |
dt_ = simParams->getDt(); |
57 |
} else { |
58 |
sprintf(painCave.errMsg, |
59 |
"Integrator Error: dt is not set\n"); |
60 |
painCave.isFatal = 1; |
61 |
simError(); |
62 |
} |
63 |
currentSnapshot_ = info_->getSnapshotManager()->getCurrentSnapshot(); |
64 |
if (simParams->haveConstraintTime()){ |
65 |
constraintTime_ = simParams->getConstraintTime(); |
66 |
} else { |
67 |
constraintTime_ = simParams->getStatusTime(); |
68 |
} |
69 |
|
70 |
constraintOutputFile_ = getPrefix(info_->getFinalConfigFileName()) + ".constraintForces"; |
71 |
|
72 |
// create ConstraintWriter |
73 |
constraintWriter_ = new ConstraintWriter(info_, constraintOutputFile_.c_str()); |
74 |
|
75 |
if (!constraintWriter_){ |
76 |
sprintf(painCave.errMsg, "Failed to create ConstraintWriter\n"); |
77 |
painCave.isFatal = 1; |
78 |
simError(); |
79 |
} |
80 |
} |
81 |
|
82 |
void Rattle::constraintA() { |
83 |
if (!doRattle_) return; |
84 |
doConstraint(&Rattle::constraintPairA); |
85 |
} |
86 |
void Rattle::constraintB() { |
87 |
if (!doRattle_) return; |
88 |
doConstraint(&Rattle::constraintPairB); |
89 |
|
90 |
if (currentSnapshot_->getTime() >= currConstraintTime_){ |
91 |
Molecule* mol; |
92 |
SimInfo::MoleculeIterator mi; |
93 |
ConstraintPair* consPair; |
94 |
Molecule::ConstraintPairIterator cpi; |
95 |
std::list<ConstraintPair*> constraints; |
96 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
97 |
mol = info_->nextMolecule(mi)) { |
98 |
for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; |
99 |
consPair = mol->nextConstraintPair(cpi)) { |
100 |
|
101 |
constraints.push_back(consPair); |
102 |
} |
103 |
} |
104 |
|
105 |
constraintWriter_->writeConstraintForces(constraints); |
106 |
currConstraintTime_ += constraintTime_; |
107 |
} |
108 |
} |
109 |
|
110 |
void Rattle::doConstraint(ConstraintPairFuncPtr func) { |
111 |
if (!doRattle_) return; |
112 |
|
113 |
Molecule* mol; |
114 |
SimInfo::MoleculeIterator mi; |
115 |
ConstraintElem* consElem; |
116 |
Molecule::ConstraintElemIterator cei; |
117 |
ConstraintPair* consPair; |
118 |
Molecule::ConstraintPairIterator cpi; |
119 |
|
120 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
121 |
mol = info_->nextMolecule(mi)) { |
122 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; |
123 |
consElem = mol->nextConstraintElem(cei)) { |
124 |
consElem->setMoved(true); |
125 |
consElem->setMoving(false); |
126 |
} |
127 |
} |
128 |
|
129 |
//main loop of constraint algorithm |
130 |
bool done = false; |
131 |
int iteration = 0; |
132 |
while(!done && iteration < maxConsIteration_){ |
133 |
done = true; |
134 |
|
135 |
//loop over every constraint pair |
136 |
|
137 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
138 |
mol = info_->nextMolecule(mi)) { |
139 |
for (consPair = mol->beginConstraintPair(cpi); consPair != NULL; |
140 |
consPair = mol->nextConstraintPair(cpi)) { |
141 |
|
142 |
|
143 |
//dispatch constraint algorithm |
144 |
if(consPair->isMoved()) { |
145 |
int exeStatus = (this->*func)(consPair); |
146 |
|
147 |
switch(exeStatus){ |
148 |
case consFail: |
149 |
sprintf(painCave.errMsg, |
150 |
"Constraint failure in Rattle::constrainA, " |
151 |
"Constraint Fail\n"); |
152 |
painCave.isFatal = 1; |
153 |
simError(); |
154 |
|
155 |
break; |
156 |
case consSuccess: |
157 |
// constrain the pair by moving two elements |
158 |
done = false; |
159 |
consPair->getConsElem1()->setMoving(true); |
160 |
consPair->getConsElem2()->setMoving(true); |
161 |
break; |
162 |
case consAlready: |
163 |
// current pair is already constrained, do not need to |
164 |
// move the elements |
165 |
break; |
166 |
default: |
167 |
sprintf(painCave.errMsg, "ConstraintAlgorithm::doConstraint() " |
168 |
"Error: unrecognized status"); |
169 |
painCave.isFatal = 1; |
170 |
simError(); |
171 |
break; |
172 |
} |
173 |
} |
174 |
} |
175 |
}//end for(iter->first()) |
176 |
|
177 |
|
178 |
for (mol = info_->beginMolecule(mi); mol != NULL; |
179 |
mol = info_->nextMolecule(mi)) { |
180 |
for (consElem = mol->beginConstraintElem(cei); consElem != NULL; |
181 |
consElem = mol->nextConstraintElem(cei)) { |
182 |
consElem->setMoved(consElem->getMoving()); |
183 |
consElem->setMoving(false); |
184 |
} |
185 |
} |
186 |
|
187 |
iteration++; |
188 |
}//end while |
189 |
|
190 |
if (!done){ |
191 |
sprintf(painCave.errMsg, |
192 |
"Constraint failure in Rattle::constrainA, " |
193 |
"too many iterations: %d\n", |
194 |
iteration); |
195 |
painCave.isFatal = 1; |
196 |
simError(); |
197 |
} |
198 |
} |
199 |
|
200 |
int Rattle::constraintPairA(ConstraintPair* consPair){ |
201 |
|
202 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
203 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
204 |
|
205 |
Vector3d posA = consElem1->getPos(); |
206 |
Vector3d posB = consElem2->getPos(); |
207 |
|
208 |
Vector3d pab = posA -posB; |
209 |
|
210 |
//periodic boundary condition |
211 |
|
212 |
currentSnapshot_->wrapVector(pab); |
213 |
|
214 |
RealType pabsq = pab.lengthSquare(); |
215 |
|
216 |
RealType rabsq = consPair->getConsDistSquare(); |
217 |
RealType diffsq = rabsq - pabsq; |
218 |
|
219 |
// the original rattle code from alan tidesley |
220 |
if (fabs(diffsq) > (consTolerance_ * rabsq * 2)){ |
221 |
|
222 |
Vector3d oldPosA = consElem1->getPrevPos(); |
223 |
Vector3d oldPosB = consElem2->getPrevPos(); |
224 |
|
225 |
Vector3d rab = oldPosA - oldPosB; |
226 |
|
227 |
currentSnapshot_->wrapVector(rab); |
228 |
|
229 |
RealType rpab = dot(rab, pab); |
230 |
RealType rpabsq = rpab * rpab; |
231 |
|
232 |
if (rpabsq < (rabsq * -diffsq)){ |
233 |
return consFail; |
234 |
} |
235 |
|
236 |
RealType rma = 1.0 / consElem1->getMass(); |
237 |
RealType rmb = 1.0 / consElem2->getMass(); |
238 |
|
239 |
RealType gab = diffsq / (2.0 * (rma + rmb) * rpab); |
240 |
|
241 |
Vector3d delta = rab * gab; |
242 |
|
243 |
//set atom1's position |
244 |
posA += rma * delta; |
245 |
consElem1->setPos(posA); |
246 |
|
247 |
//set atom2's position |
248 |
posB -= rmb * delta; |
249 |
consElem2->setPos(posB); |
250 |
|
251 |
delta /= dt_; |
252 |
|
253 |
//set atom1's velocity |
254 |
Vector3d velA = consElem1->getVel(); |
255 |
velA += rma * delta; |
256 |
consElem1->setVel(velA); |
257 |
|
258 |
//set atom2's velocity |
259 |
Vector3d velB = consElem2->getVel(); |
260 |
velB -= rmb * delta; |
261 |
consElem2->setVel(velB); |
262 |
|
263 |
// report the constraint force back to the constraint pair: |
264 |
consPair->setConstraintForce(gab); |
265 |
return consSuccess; |
266 |
} |
267 |
else |
268 |
return consAlready; |
269 |
|
270 |
} |
271 |
|
272 |
|
273 |
int Rattle::constraintPairB(ConstraintPair* consPair){ |
274 |
ConstraintElem* consElem1 = consPair->getConsElem1(); |
275 |
ConstraintElem* consElem2 = consPair->getConsElem2(); |
276 |
|
277 |
|
278 |
Vector3d velA = consElem1->getVel(); |
279 |
Vector3d velB = consElem2->getVel(); |
280 |
|
281 |
Vector3d dv = velA - velB; |
282 |
|
283 |
Vector3d posA = consElem1->getPos(); |
284 |
Vector3d posB = consElem2->getPos(); |
285 |
|
286 |
Vector3d rab = posA - posB; |
287 |
|
288 |
currentSnapshot_->wrapVector(rab); |
289 |
|
290 |
RealType rma = 1.0 / consElem1->getMass(); |
291 |
RealType rmb = 1.0 / consElem2->getMass(); |
292 |
|
293 |
RealType rvab = dot(rab, dv); |
294 |
|
295 |
RealType gab = -rvab / ((rma + rmb) * consPair->getConsDistSquare()); |
296 |
|
297 |
if (fabs(gab) > consTolerance_){ |
298 |
Vector3d delta = rab * gab; |
299 |
|
300 |
velA += rma * delta; |
301 |
consElem1->setVel(velA); |
302 |
|
303 |
velB -= rmb * delta; |
304 |
consElem2->setVel(velB); |
305 |
|
306 |
// report the constraint force back to the constraint pair: |
307 |
consPair->setConstraintForce(gab); |
308 |
return consSuccess; |
309 |
} |
310 |
else |
311 |
return consAlready; |
312 |
|
313 |
} |
314 |
|
315 |
} |