1 |
gezelter |
2 |
#ifdef IS_MPI |
2 |
|
|
#include <iostream> |
3 |
|
|
#include <stdlib.h> |
4 |
|
|
#include <string.h> |
5 |
|
|
#include <math.h> |
6 |
|
|
#include <mpi.h> |
7 |
|
|
|
8 |
tim |
3 |
#include "brains/mpiSimulation.hpp" |
9 |
|
|
#include "utils/simError.h" |
10 |
|
|
#include "UseTheForce/fortranWrappers.hpp" |
11 |
|
|
#include "math/randomSPRNG.hpp" |
12 |
gezelter |
2 |
|
13 |
|
|
mpiSimulation* mpiSim; |
14 |
|
|
|
15 |
|
|
mpiSimulation::mpiSimulation(SimInfo* the_entryPlug) |
16 |
|
|
{ |
17 |
|
|
entryPlug = the_entryPlug; |
18 |
|
|
parallelData = new mpiSimData; |
19 |
|
|
|
20 |
|
|
MPI_Comm_size(MPI_COMM_WORLD, &(parallelData->nProcessors) ); |
21 |
|
|
parallelData->myNode = worldRank; |
22 |
|
|
|
23 |
|
|
MolToProcMap = new int[entryPlug->n_mol]; |
24 |
|
|
MolComponentType = new int[entryPlug->n_mol]; |
25 |
|
|
AtomToProcMap = new int[entryPlug->n_atoms]; |
26 |
|
|
GroupToProcMap = new int[entryPlug->ngroup]; |
27 |
|
|
|
28 |
|
|
mpiSim = this; |
29 |
|
|
wrapMeSimParallel( this ); |
30 |
|
|
} |
31 |
|
|
|
32 |
|
|
|
33 |
|
|
mpiSimulation::~mpiSimulation(){ |
34 |
|
|
|
35 |
|
|
delete[] MolToProcMap; |
36 |
|
|
delete[] MolComponentType; |
37 |
|
|
delete[] AtomToProcMap; |
38 |
|
|
delete[] GroupToProcMap; |
39 |
|
|
|
40 |
|
|
delete parallelData; |
41 |
|
|
// perhaps we should let fortran know the party is over. |
42 |
|
|
|
43 |
|
|
} |
44 |
|
|
|
45 |
|
|
void mpiSimulation::divideLabor( ){ |
46 |
|
|
|
47 |
|
|
int nComponents; |
48 |
|
|
MoleculeStamp** compStamps; |
49 |
|
|
randomSPRNG *myRandom; |
50 |
|
|
int* componentsNmol; |
51 |
|
|
int* AtomsPerProc; |
52 |
|
|
int* GroupsPerProc; |
53 |
|
|
|
54 |
|
|
double numerator; |
55 |
|
|
double denominator; |
56 |
|
|
double precast; |
57 |
|
|
double x, y, a; |
58 |
|
|
int old_atoms, add_atoms, new_atoms; |
59 |
|
|
int old_groups, add_groups, new_groups; |
60 |
|
|
|
61 |
|
|
int nTarget; |
62 |
|
|
int molIndex, atomIndex, groupIndex; |
63 |
|
|
int done; |
64 |
|
|
int i, j, loops, which_proc; |
65 |
|
|
int nmol_global, nmol_local; |
66 |
|
|
int ngroups_global, ngroups_local; |
67 |
|
|
int natoms_global, natoms_local; |
68 |
|
|
int ncutoff_groups, nAtomsInGroups; |
69 |
|
|
int local_index; |
70 |
|
|
int baseSeed = entryPlug->getSeed(); |
71 |
|
|
CutoffGroupStamp* cg; |
72 |
|
|
|
73 |
|
|
nComponents = entryPlug->nComponents; |
74 |
|
|
compStamps = entryPlug->compStamps; |
75 |
|
|
componentsNmol = entryPlug->componentsNmol; |
76 |
|
|
AtomsPerProc = new int[parallelData->nProcessors]; |
77 |
|
|
GroupsPerProc = new int[parallelData->nProcessors]; |
78 |
|
|
|
79 |
|
|
parallelData->nAtomsGlobal = entryPlug->n_atoms; |
80 |
|
|
parallelData->nBondsGlobal = entryPlug->n_bonds; |
81 |
|
|
parallelData->nBendsGlobal = entryPlug->n_bends; |
82 |
|
|
parallelData->nTorsionsGlobal = entryPlug->n_torsions; |
83 |
|
|
parallelData->nSRIGlobal = entryPlug->n_SRI; |
84 |
|
|
parallelData->nGroupsGlobal = entryPlug->ngroup; |
85 |
|
|
parallelData->nMolGlobal = entryPlug->n_mol; |
86 |
|
|
|
87 |
|
|
if (parallelData->nProcessors > parallelData->nMolGlobal) { |
88 |
|
|
sprintf( painCave.errMsg, |
89 |
|
|
"nProcessors (%d) > nMol (%d)\n" |
90 |
|
|
"\tThe number of processors is larger than\n" |
91 |
|
|
"\tthe number of molecules. This will not result in a \n" |
92 |
|
|
"\tusable division of atoms for force decomposition.\n" |
93 |
|
|
"\tEither try a smaller number of processors, or run the\n" |
94 |
|
|
"\tsingle-processor version of OOPSE.\n", |
95 |
|
|
parallelData->nProcessors, parallelData->nMolGlobal ); |
96 |
|
|
painCave.isFatal = 1; |
97 |
|
|
simError(); |
98 |
|
|
} |
99 |
|
|
|
100 |
|
|
myRandom = new randomSPRNG( baseSeed ); |
101 |
|
|
|
102 |
|
|
|
103 |
|
|
a = 3.0 * (double)parallelData->nMolGlobal / (double)parallelData->nAtomsGlobal; |
104 |
|
|
|
105 |
|
|
// Initialize things that we'll send out later: |
106 |
|
|
for (i = 0; i < parallelData->nProcessors; i++ ) { |
107 |
|
|
AtomsPerProc[i] = 0; |
108 |
|
|
GroupsPerProc[i] = 0; |
109 |
|
|
} |
110 |
|
|
for (i = 0; i < parallelData->nMolGlobal; i++ ) { |
111 |
|
|
// default to an error condition: |
112 |
|
|
MolToProcMap[i] = -1; |
113 |
|
|
MolComponentType[i] = -1; |
114 |
|
|
} |
115 |
|
|
for (i = 0; i < parallelData->nAtomsGlobal; i++ ) { |
116 |
|
|
// default to an error condition: |
117 |
|
|
AtomToProcMap[i] = -1; |
118 |
|
|
} |
119 |
|
|
for (i = 0; i < parallelData->nGroupsGlobal; i++ ) { |
120 |
|
|
// default to an error condition: |
121 |
|
|
GroupToProcMap[i] = -1; |
122 |
|
|
} |
123 |
|
|
|
124 |
|
|
if (parallelData->myNode == 0) { |
125 |
|
|
numerator = (double) entryPlug->n_atoms; |
126 |
|
|
denominator = (double) parallelData->nProcessors; |
127 |
|
|
precast = numerator / denominator; |
128 |
|
|
nTarget = (int)( precast + 0.5 ); |
129 |
|
|
|
130 |
|
|
// Build the array of molecule component types first |
131 |
|
|
molIndex = 0; |
132 |
|
|
for (i=0; i < nComponents; i++) { |
133 |
|
|
for (j=0; j < componentsNmol[i]; j++) { |
134 |
|
|
MolComponentType[molIndex] = i; |
135 |
|
|
molIndex++; |
136 |
|
|
} |
137 |
|
|
} |
138 |
|
|
|
139 |
|
|
atomIndex = 0; |
140 |
|
|
groupIndex = 0; |
141 |
|
|
|
142 |
|
|
for (i = 0; i < molIndex; i++ ) { |
143 |
|
|
|
144 |
|
|
done = 0; |
145 |
|
|
loops = 0; |
146 |
|
|
|
147 |
|
|
while( !done ){ |
148 |
|
|
loops++; |
149 |
|
|
|
150 |
|
|
// Pick a processor at random |
151 |
|
|
|
152 |
|
|
which_proc = (int) (myRandom->getRandom() * parallelData->nProcessors); |
153 |
|
|
|
154 |
|
|
// How many atoms does this processor have? |
155 |
|
|
|
156 |
|
|
old_atoms = AtomsPerProc[which_proc]; |
157 |
|
|
add_atoms = compStamps[MolComponentType[i]]->getNAtoms(); |
158 |
|
|
new_atoms = old_atoms + add_atoms; |
159 |
|
|
|
160 |
|
|
old_groups = GroupsPerProc[which_proc]; |
161 |
|
|
ncutoff_groups = compStamps[MolComponentType[i]]->getNCutoffGroups(); |
162 |
|
|
nAtomsInGroups = 0; |
163 |
|
|
for (j = 0; j < ncutoff_groups; j++) { |
164 |
|
|
cg = compStamps[MolComponentType[i]]->getCutoffGroup(j); |
165 |
|
|
nAtomsInGroups += cg->getNMembers(); |
166 |
|
|
} |
167 |
|
|
add_groups = add_atoms - nAtomsInGroups + ncutoff_groups; |
168 |
|
|
new_groups = old_groups + add_groups; |
169 |
|
|
|
170 |
|
|
// If we've been through this loop too many times, we need |
171 |
|
|
// to just give up and assign the molecule to this processor |
172 |
|
|
// and be done with it. |
173 |
|
|
|
174 |
|
|
if (loops > 100) { |
175 |
|
|
sprintf( painCave.errMsg, |
176 |
|
|
"I've tried 100 times to assign molecule %d to a " |
177 |
|
|
" processor, but can't find a good spot.\n" |
178 |
|
|
"I'm assigning it at random to processor %d.\n", |
179 |
|
|
i, which_proc); |
180 |
|
|
painCave.isFatal = 0; |
181 |
|
|
simError(); |
182 |
|
|
|
183 |
|
|
MolToProcMap[i] = which_proc; |
184 |
|
|
AtomsPerProc[which_proc] += add_atoms; |
185 |
|
|
for (j = 0 ; j < add_atoms; j++ ) { |
186 |
|
|
AtomToProcMap[atomIndex] = which_proc; |
187 |
|
|
atomIndex++; |
188 |
|
|
} |
189 |
|
|
GroupsPerProc[which_proc] += add_groups; |
190 |
|
|
for (j=0; j < add_groups; j++) { |
191 |
|
|
GroupToProcMap[groupIndex] = which_proc; |
192 |
|
|
groupIndex++; |
193 |
|
|
} |
194 |
|
|
done = 1; |
195 |
|
|
continue; |
196 |
|
|
} |
197 |
|
|
|
198 |
|
|
// If we can add this molecule to this processor without sending |
199 |
|
|
// it above nTarget, then go ahead and do it: |
200 |
|
|
|
201 |
|
|
if (new_atoms <= nTarget) { |
202 |
|
|
MolToProcMap[i] = which_proc; |
203 |
|
|
AtomsPerProc[which_proc] += add_atoms; |
204 |
|
|
for (j = 0 ; j < add_atoms; j++ ) { |
205 |
|
|
AtomToProcMap[atomIndex] = which_proc; |
206 |
|
|
atomIndex++; |
207 |
|
|
} |
208 |
|
|
GroupsPerProc[which_proc] += add_groups; |
209 |
|
|
for (j=0; j < add_groups; j++) { |
210 |
|
|
GroupToProcMap[groupIndex] = which_proc; |
211 |
|
|
groupIndex++; |
212 |
|
|
} |
213 |
|
|
done = 1; |
214 |
|
|
continue; |
215 |
|
|
} |
216 |
|
|
|
217 |
|
|
|
218 |
|
|
// The only situation left is when new_atoms > nTarget. We |
219 |
|
|
// want to accept this with some probability that dies off the |
220 |
|
|
// farther we are from nTarget |
221 |
|
|
|
222 |
|
|
// roughly: x = new_atoms - nTarget |
223 |
|
|
// Pacc(x) = exp(- a * x) |
224 |
|
|
// where a = penalty / (average atoms per molecule) |
225 |
|
|
|
226 |
|
|
x = (double) (new_atoms - nTarget); |
227 |
|
|
y = myRandom->getRandom(); |
228 |
|
|
|
229 |
|
|
if (y < exp(- a * x)) { |
230 |
|
|
MolToProcMap[i] = which_proc; |
231 |
|
|
AtomsPerProc[which_proc] += add_atoms; |
232 |
|
|
for (j = 0 ; j < add_atoms; j++ ) { |
233 |
|
|
AtomToProcMap[atomIndex] = which_proc; |
234 |
|
|
atomIndex++; |
235 |
|
|
} |
236 |
|
|
GroupsPerProc[which_proc] += add_groups; |
237 |
|
|
for (j=0; j < add_groups; j++) { |
238 |
|
|
GroupToProcMap[groupIndex] = which_proc; |
239 |
|
|
groupIndex++; |
240 |
|
|
} |
241 |
|
|
done = 1; |
242 |
|
|
continue; |
243 |
|
|
} else { |
244 |
|
|
continue; |
245 |
|
|
} |
246 |
|
|
|
247 |
|
|
} |
248 |
|
|
} |
249 |
|
|
|
250 |
|
|
|
251 |
|
|
// Spray out this nonsense to all other processors: |
252 |
|
|
|
253 |
|
|
//std::cerr << "node 0 mol2proc = \n"; |
254 |
|
|
//for (i = 0; i < parallelData->nMolGlobal; i++) |
255 |
|
|
// std::cerr << i << "\t" << MolToProcMap[i] << "\n"; |
256 |
|
|
|
257 |
|
|
MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
258 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
259 |
|
|
|
260 |
|
|
MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal, |
261 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
262 |
|
|
|
263 |
|
|
MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal, |
264 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
265 |
|
|
|
266 |
|
|
MPI_Bcast(MolComponentType, parallelData->nMolGlobal, |
267 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
268 |
|
|
|
269 |
|
|
MPI_Bcast(AtomsPerProc, parallelData->nProcessors, |
270 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
271 |
|
|
|
272 |
|
|
MPI_Bcast(GroupsPerProc, parallelData->nProcessors, |
273 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
274 |
|
|
} else { |
275 |
|
|
|
276 |
|
|
// Listen to your marching orders from processor 0: |
277 |
|
|
|
278 |
|
|
MPI_Bcast(MolToProcMap, parallelData->nMolGlobal, |
279 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
280 |
|
|
|
281 |
|
|
MPI_Bcast(AtomToProcMap, parallelData->nAtomsGlobal, |
282 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
283 |
|
|
|
284 |
|
|
MPI_Bcast(GroupToProcMap, parallelData->nGroupsGlobal, |
285 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
286 |
|
|
|
287 |
|
|
MPI_Bcast(MolComponentType, parallelData->nMolGlobal, |
288 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
289 |
|
|
|
290 |
|
|
MPI_Bcast(AtomsPerProc, parallelData->nProcessors, |
291 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
292 |
|
|
|
293 |
|
|
MPI_Bcast(GroupsPerProc, parallelData->nProcessors, |
294 |
|
|
MPI_INT, 0, MPI_COMM_WORLD); |
295 |
|
|
|
296 |
|
|
|
297 |
|
|
} |
298 |
|
|
|
299 |
|
|
// Let's all check for sanity: |
300 |
|
|
|
301 |
|
|
nmol_local = 0; |
302 |
|
|
for (i = 0 ; i < parallelData->nMolGlobal; i++ ) { |
303 |
|
|
if (MolToProcMap[i] == parallelData->myNode) { |
304 |
|
|
nmol_local++; |
305 |
|
|
} |
306 |
|
|
} |
307 |
|
|
|
308 |
|
|
natoms_local = 0; |
309 |
|
|
for (i = 0; i < parallelData->nAtomsGlobal; i++) { |
310 |
|
|
if (AtomToProcMap[i] == parallelData->myNode) { |
311 |
|
|
natoms_local++; |
312 |
|
|
} |
313 |
|
|
} |
314 |
|
|
|
315 |
|
|
ngroups_local = 0; |
316 |
|
|
for (i = 0; i < parallelData->nGroupsGlobal; i++) { |
317 |
|
|
if (GroupToProcMap[i] == parallelData->myNode) { |
318 |
|
|
ngroups_local++; |
319 |
|
|
} |
320 |
|
|
} |
321 |
|
|
|
322 |
|
|
MPI_Allreduce(&nmol_local,&nmol_global,1,MPI_INT,MPI_SUM, |
323 |
|
|
MPI_COMM_WORLD); |
324 |
|
|
|
325 |
|
|
MPI_Allreduce(&natoms_local,&natoms_global,1,MPI_INT, |
326 |
|
|
MPI_SUM, MPI_COMM_WORLD); |
327 |
|
|
|
328 |
|
|
MPI_Allreduce(&ngroups_local,&ngroups_global,1,MPI_INT, |
329 |
|
|
MPI_SUM, MPI_COMM_WORLD); |
330 |
|
|
|
331 |
|
|
if( nmol_global != entryPlug->n_mol ){ |
332 |
|
|
sprintf( painCave.errMsg, |
333 |
|
|
"The sum of all nmol_local, %d, did not equal the " |
334 |
|
|
"total number of molecules, %d.\n", |
335 |
|
|
nmol_global, entryPlug->n_mol ); |
336 |
|
|
painCave.isFatal = 1; |
337 |
|
|
simError(); |
338 |
|
|
} |
339 |
|
|
|
340 |
|
|
if( natoms_global != entryPlug->n_atoms ){ |
341 |
|
|
sprintf( painCave.errMsg, |
342 |
|
|
"The sum of all natoms_local, %d, did not equal the " |
343 |
|
|
"total number of atoms, %d.\n", |
344 |
|
|
natoms_global, entryPlug->n_atoms ); |
345 |
|
|
painCave.isFatal = 1; |
346 |
|
|
simError(); |
347 |
|
|
} |
348 |
|
|
|
349 |
|
|
if( ngroups_global != entryPlug->ngroup ){ |
350 |
|
|
sprintf( painCave.errMsg, |
351 |
|
|
"The sum of all ngroups_local, %d, did not equal the " |
352 |
|
|
"total number of cutoffGroups, %d.\n", |
353 |
|
|
ngroups_global, entryPlug->ngroup ); |
354 |
|
|
painCave.isFatal = 1; |
355 |
|
|
simError(); |
356 |
|
|
} |
357 |
|
|
|
358 |
|
|
sprintf( checkPointMsg, |
359 |
|
|
"Successfully divided the molecules among the processors.\n" ); |
360 |
|
|
MPIcheckPoint(); |
361 |
|
|
|
362 |
|
|
parallelData->nMolLocal = nmol_local; |
363 |
|
|
parallelData->nAtomsLocal = natoms_local; |
364 |
|
|
parallelData->nGroupsLocal = ngroups_local; |
365 |
|
|
|
366 |
|
|
globalAtomIndex.resize(parallelData->nAtomsLocal); |
367 |
|
|
globalToLocalAtom.resize(parallelData->nAtomsGlobal); |
368 |
|
|
local_index = 0; |
369 |
|
|
for (i = 0; i < parallelData->nAtomsGlobal; i++) { |
370 |
|
|
if (AtomToProcMap[i] == parallelData->myNode) { |
371 |
|
|
globalAtomIndex[local_index] = i; |
372 |
|
|
|
373 |
|
|
globalToLocalAtom[i] = local_index; |
374 |
|
|
local_index++; |
375 |
|
|
|
376 |
|
|
} |
377 |
|
|
else |
378 |
|
|
globalToLocalAtom[i] = -1; |
379 |
|
|
} |
380 |
|
|
|
381 |
|
|
globalGroupIndex.resize(parallelData->nGroupsLocal); |
382 |
|
|
globalToLocalGroup.resize(parallelData->nGroupsGlobal); |
383 |
|
|
local_index = 0; |
384 |
|
|
for (i = 0; i < parallelData->nGroupsGlobal; i++) { |
385 |
|
|
if (GroupToProcMap[i] == parallelData->myNode) { |
386 |
|
|
globalGroupIndex[local_index] = i; |
387 |
|
|
|
388 |
|
|
globalToLocalGroup[i] = local_index; |
389 |
|
|
local_index++; |
390 |
|
|
|
391 |
|
|
} |
392 |
|
|
else |
393 |
|
|
globalToLocalGroup[i] = -1; |
394 |
|
|
} |
395 |
|
|
|
396 |
|
|
globalMolIndex.resize(parallelData->nMolLocal); |
397 |
|
|
globalToLocalMol.resize(parallelData->nMolGlobal); |
398 |
|
|
local_index = 0; |
399 |
|
|
for (i = 0; i < parallelData->nMolGlobal; i++) { |
400 |
|
|
if (MolToProcMap[i] == parallelData->myNode) { |
401 |
|
|
globalMolIndex[local_index] = i; |
402 |
|
|
globalToLocalMol[i] = local_index; |
403 |
|
|
local_index++; |
404 |
|
|
} |
405 |
|
|
else |
406 |
|
|
globalToLocalMol[i] = -1; |
407 |
|
|
} |
408 |
|
|
|
409 |
|
|
} |
410 |
|
|
|
411 |
|
|
|
412 |
|
|
void mpiSimulation::mpiRefresh( void ){ |
413 |
|
|
|
414 |
|
|
int isError, i; |
415 |
|
|
int *localToGlobalAtomIndex = new int[parallelData->nAtomsLocal]; |
416 |
|
|
int *localToGlobalGroupIndex = new int[parallelData->nGroupsLocal]; |
417 |
|
|
|
418 |
|
|
// Fortran indexing needs to be increased by 1 in order to get the 2 |
419 |
|
|
// languages to not barf |
420 |
|
|
|
421 |
|
|
for(i = 0; i < parallelData->nAtomsLocal; i++) |
422 |
|
|
localToGlobalAtomIndex[i] = globalAtomIndex[i] + 1; |
423 |
|
|
|
424 |
|
|
for(i = 0; i < parallelData->nGroupsLocal; i++) |
425 |
|
|
localToGlobalGroupIndex[i] = globalGroupIndex[i] + 1; |
426 |
|
|
|
427 |
|
|
isError = 0; |
428 |
|
|
|
429 |
|
|
setFsimParallel( parallelData, |
430 |
|
|
&(parallelData->nAtomsLocal), localToGlobalAtomIndex, |
431 |
|
|
&(parallelData->nGroupsLocal), localToGlobalGroupIndex, |
432 |
|
|
&isError ); |
433 |
|
|
|
434 |
|
|
if( isError ){ |
435 |
|
|
|
436 |
|
|
sprintf( painCave.errMsg, |
437 |
|
|
"mpiRefresh errror: fortran didn't like something we gave it.\n" ); |
438 |
|
|
painCave.isFatal = 1; |
439 |
|
|
simError(); |
440 |
|
|
} |
441 |
|
|
|
442 |
|
|
delete[] localToGlobalGroupIndex; |
443 |
|
|
delete[] localToGlobalAtomIndex; |
444 |
|
|
|
445 |
|
|
|
446 |
|
|
sprintf( checkPointMsg, |
447 |
|
|
" mpiRefresh successful.\n" ); |
448 |
|
|
MPIcheckPoint(); |
449 |
|
|
} |
450 |
|
|
|
451 |
|
|
|
452 |
|
|
#endif // is_mpi |