ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 2046 by gezelter, Tue Dec 2 22:11:04 2014 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
41
42 #include <math.h>
43 #include <iostream>
42  
43   #ifdef IS_MPI
44   #include <mpi.h>
45   #endif //is_mpi
46 +
47 + #include <math.h>
48 + #include <iostream>
49  
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/FixedChargeAdapter.hpp"
55 > #include "types/FluctuatingChargeAdapter.hpp"
56 > #include "types/MultipoleAdapter.hpp"
57 > #ifdef HAVE_QHULL
58 > #include "math/ConvexHull.hpp"
59 > #include "math/AlphaHull.hpp"
60 > #endif
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64  
65 <  double Thermo::getKinetic() {
66 <    SimInfo::MoleculeIterator miter;
58 <    std::vector<StuntDouble*>::iterator iiter;
59 <    Molecule* mol;
60 <    StuntDouble* integrableObject;    
61 <    Vector3d vel;
62 <    Vector3d angMom;
63 <    Mat3x3d I;
64 <    int i;
65 <    int j;
66 <    int k;
67 <    double kinetic = 0.0;
68 <    double kinetic_global = 0.0;
69 <    
70 <    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
71 <      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
72 <           integrableObject = mol->nextIntegrableObject(iiter)) {
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67  
68 <        double mass = integrableObject->getMass();
69 <        Vector3d vel = integrableObject->getVel();
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79 >        
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
93 >                    MPI_SUM, MPI_COMM_WORLD);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100 >    }
101 >    return snap->getTranslationalKineticEnergy();
102 >  }
103  
104 <        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
104 >  RealType Thermo::getRotationalKinetic() {
105 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106  
107 <        if (integrableObject->isDirectional()) {
108 <          angMom = integrableObject->getJ();
109 <          I = integrableObject->getI();
110 <
111 <          if (integrableObject->isLinear()) {
112 <            i = integrableObject->linearAxis();
113 <            j = (i + 1) % 3;
114 <            k = (i + 2) % 3;
115 <            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
116 <          } else {                        
117 <            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
118 <              + angMom[2]*angMom[2]/I(2, 2);
119 <          }
120 <        }
107 >    if (!snap->hasRotationalKineticEnergy) {
108 >      SimInfo::MoleculeIterator miter;
109 >      vector<StuntDouble*>::iterator iiter;
110 >      Molecule* mol;
111 >      StuntDouble* sd;    
112 >      Vector3d angMom;
113 >      Mat3x3d I;
114 >      int i, j, k;
115 >      RealType kinetic(0.0);
116 >      
117 >      for (mol = info_->beginMolecule(miter); mol != NULL;
118 >           mol = info_->nextMolecule(miter)) {
119 >        
120 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 >             sd = mol->nextIntegrableObject(iiter)) {
122 >          
123 >          if (sd->isDirectional()) {
124 >            angMom = sd->getJ();
125 >            I = sd->getI();
126              
127 +            if (sd->isLinear()) {
128 +              i = sd->linearAxis();
129 +              j = (i + 1) % 3;
130 +              k = (i + 2) % 3;
131 +              kinetic += angMom[j] * angMom[j] / I(j, j)
132 +                + angMom[k] * angMom[k] / I(k, k);
133 +            } else {                        
134 +              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 +                + angMom[1]*angMom[1]/I(1, 1)
136 +                + angMom[2]*angMom[2]/I(2, 2);
137 +            }
138 +          }          
139 +        }
140        }
141 <    }
96 <    
141 >      
142   #ifdef IS_MPI
143 +      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
144 +                    MPI_SUM, MPI_COMM_WORLD);
145 + #endif
146 +      
147 +      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 +          
149 +      snap->setRotationalKineticEnergy(kinetic);
150 +    }
151 +    return snap->getRotationalKineticEnergy();
152 +  }
153  
154 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
100 <                  MPI_COMM_WORLD);
101 <    kinetic = kinetic_global;
154 >      
155  
156 < #endif //is_mpi
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
160 <
161 <    return kinetic;
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164    }
165  
166 <  double Thermo::getPotential() {
111 <    double potential = 0.0;
112 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
113 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
166 >  RealType Thermo::getPotential() {
167  
168 <    // Get total potential for entire system from MPI.
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 < #ifdef IS_MPI
172 <
120 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
121 <                  MPI_COMM_WORLD);
122 <
123 < #else
124 <
125 <    potential = potential_local;
126 <
127 < #endif // is_mpi
128 <
129 <    return potential;
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173    }
174  
175 <  double Thermo::getTotalE() {
133 <    double total;
175 >  RealType Thermo::getTotalEnergy() {
176  
177 <    total = this->getKinetic() + this->getPotential();
136 <    return total;
137 <  }
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <  double Thermo::getTemperature() {
180 <    
181 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
142 <    return temperature;
143 <  }
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 <  double Thermo::getVolume() {
146 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
147 <    return curSnapshot->getVolume();
183 >    return snap->getTotalEnergy();
184    }
185  
186 <  double Thermo::getPressure() {
186 >  RealType Thermo::getTemperature() {
187  
188 <    // Relies on the calculation of the full molecular pressure tensor
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 +    if (!snap->hasTemperature) {
191  
192 <    Mat3x3d tensor;
193 <    double pressure;
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 <    tensor = getPressureTensor();
196 <
197 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
198 <
162 <    return pressure;
195 >      snap->setTemperature(temperature);
196 >    }
197 >    
198 >    return snap->getTemperature();
199    }
200  
201 <  double Thermo::getPressure(int direction) {
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <    // Relies on the calculation of the full molecular pressure tensor
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
231 >                    MPI_SUM, MPI_COMM_WORLD);
232 > #endif
233  
234 <          
235 <    Mat3x3d tensor;
236 <    double pressure;
234 >      kinetic *= 0.5;
235 >      eTemp =  (2.0 * kinetic) /
236 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );            
237 >    
238 >      snap->setElectronicTemperature(eTemp);
239 >    }
240  
241 <    tensor = getPressureTensor();
241 >    return snap->getElectronicTemperature();
242 >  }
243  
175    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
244  
245 <    return pressure;
245 >  RealType Thermo::getVolume() {
246 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 >    return snap->getVolume();
248    }
249  
250 +  RealType Thermo::getPressure() {
251 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252  
253 +    if (!snap->hasPressure) {
254 +      // Relies on the calculation of the full molecular pressure tensor
255 +      
256 +      Mat3x3d tensor;
257 +      RealType pressure;
258 +      
259 +      tensor = getPressureTensor();
260 +      
261 +      pressure = PhysicalConstants::pressureConvert *
262 +        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 +      
264 +      snap->setPressure(pressure);
265 +    }
266 +    
267 +    return snap->getPressure();    
268 +  }
269  
270    Mat3x3d Thermo::getPressureTensor() {
271      // returns pressure tensor in units amu*fs^-2*Ang^-1
272      // routine derived via viral theorem description in:
273      // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 <    Mat3x3d pressureTensor;
187 <    Mat3x3d p_local(0.0);
188 <    Mat3x3d p_global(0.0);
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <    SimInfo::MoleculeIterator i;
191 <    std::vector<StuntDouble*>::iterator j;
192 <    Molecule* mol;
193 <    StuntDouble* integrableObject;    
194 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
195 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196 <           integrableObject = mol->nextIntegrableObject(j)) {
276 >    if (!snap->hasPressureTensor) {
277  
278 <        double mass = integrableObject->getMass();
279 <        Vector3d vcom = integrableObject->getVel();
280 <        p_local += mass * outProduct(vcom, vcom);        
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297        }
298 <    }
203 <    
298 >      
299   #ifdef IS_MPI
300 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
301 < #else
302 <    p_global = p_local;
303 < #endif // is_mpi
300 >      MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9,
301 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
302 > #endif
303 >      
304 >      RealType volume = this->getVolume();
305 >      Mat3x3d stressTensor = snap->getStressTensor();
306 >      
307 >      pressureTensor =  (p_tens +
308 >                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 >      
310 >      snap->setPressureTensor(pressureTensor);
311 >    }
312 >    return snap->getPressureTensor();
313 >  }
314  
210    double volume = this->getVolume();
211    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
212    Mat3x3d tau = curSnapshot->statData.getTau();
315  
214    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
316  
317 <    return pressureTensor;
317 >
318 >  Vector3d Thermo::getSystemDipole() {
319 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 >
321 >    if (!snap->hasSystemDipole) {
322 >      SimInfo::MoleculeIterator miter;
323 >      vector<Atom*>::iterator aiter;
324 >      Molecule* mol;
325 >      Atom* atom;
326 >      RealType charge;
327 >      Vector3d ri(0.0);
328 >      Vector3d dipoleVector(0.0);
329 >      Vector3d nPos(0.0);
330 >      Vector3d pPos(0.0);
331 >      RealType nChg(0.0);
332 >      RealType pChg(0.0);
333 >      int nCount = 0;
334 >      int pCount = 0;
335 >      
336 >      RealType chargeToC = 1.60217733e-19;
337 >      RealType angstromToM = 1.0e-10;
338 >      RealType debyeToCm = 3.33564095198e-30;
339 >      
340 >      for (mol = info_->beginMolecule(miter); mol != NULL;
341 >           mol = info_->nextMolecule(miter)) {
342 >        
343 >        for (atom = mol->beginAtom(aiter); atom != NULL;
344 >             atom = mol->nextAtom(aiter)) {
345 >          
346 >          charge = 0.0;
347 >          
348 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349 >          if ( fca.isFixedCharge() ) {
350 >            charge = fca.getCharge();
351 >          }
352 >          
353 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354 >          if ( fqa.isFluctuatingCharge() ) {
355 >            charge += atom->getFlucQPos();
356 >          }
357 >          
358 >          charge *= chargeToC;
359 >          
360 >          ri = atom->getPos();
361 >          snap->wrapVector(ri);
362 >          ri *= angstromToM;
363 >          
364 >          if (charge < 0.0) {
365 >            nPos += ri;
366 >            nChg -= charge;
367 >            nCount++;
368 >          } else if (charge > 0.0) {
369 >            pPos += ri;
370 >            pChg += charge;
371 >            pCount++;
372 >          }
373 >          
374 >          if (atom->isDipole()) {
375 >            dipoleVector += atom->getDipole() * debyeToCm;
376 >          }
377 >        }
378 >      }
379 >      
380 >      
381 > #ifdef IS_MPI
382 >      MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE,
383 >                    MPI_SUM, MPI_COMM_WORLD);
384 >      MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE,
385 >                    MPI_SUM, MPI_COMM_WORLD);
386 >      
387 >      MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER,
388 >                    MPI_SUM, MPI_COMM_WORLD);
389 >      MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER,
390 >                    MPI_SUM, MPI_COMM_WORLD);
391 >      
392 >      MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3,
393 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
394 >      MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3,
395 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
396 >
397 >      MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(),
398 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399 > #endif
400 >      
401 >      // first load the accumulated dipole moment (if dipoles were present)
402 >      Vector3d boxDipole = dipoleVector;
403 >      // now include the dipole moment due to charges
404 >      // use the lesser of the positive and negative charge totals
405 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
406 >      
407 >      // find the average positions
408 >      if (pCount > 0 && nCount > 0 ) {
409 >        pPos /= pCount;
410 >        nPos /= nCount;
411 >      }
412 >      
413 >      // dipole is from the negative to the positive (physics notation)
414 >      boxDipole += (pPos - nPos) * chg_value;
415 >      snap->setSystemDipole(boxDipole);
416 >    }
417 >
418 >    return snap->getSystemDipole();
419    }
420  
421 <  void Thermo::saveStat(){
422 <    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
423 <    Stats& stat = currSnapshot->statData;
421 >
422 >  Mat3x3d Thermo::getSystemQuadrupole() {
423 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
424 >
425 >    if (!snap->hasSystemQuadrupole) {
426 >      SimInfo::MoleculeIterator miter;
427 >      vector<Atom*>::iterator aiter;
428 >      Molecule* mol;
429 >      Atom* atom;
430 >      RealType charge;
431 >      Vector3d ri(0.0);
432 >      Vector3d dipole(0.0);
433 >      Mat3x3d qpole(0.0);
434 >      
435 >      RealType chargeToC = 1.60217733e-19;
436 >      RealType angstromToM = 1.0e-10;
437 >      RealType debyeToCm = 3.33564095198e-30;
438 >      
439 >      for (mol = info_->beginMolecule(miter); mol != NULL;
440 >           mol = info_->nextMolecule(miter)) {
441 >        
442 >        for (atom = mol->beginAtom(aiter); atom != NULL;
443 >             atom = mol->nextAtom(aiter)) {
444 >
445 >          ri = atom->getPos();
446 >          snap->wrapVector(ri);
447 >          ri *= angstromToM;
448 >          
449 >          charge = 0.0;
450 >          
451 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
452 >          if ( fca.isFixedCharge() ) {
453 >            charge = fca.getCharge();
454 >          }
455 >          
456 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
457 >          if ( fqa.isFluctuatingCharge() ) {
458 >            charge += atom->getFlucQPos();
459 >          }
460 >          
461 >          charge *= chargeToC;
462 >          
463 >          qpole += 0.5 * charge * outProduct(ri, ri);
464 >
465 >          MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
466 >          
467 >          if ( ma.isDipole() ) {
468 >            dipole = atom->getDipole() * debyeToCm;
469 >            qpole += 0.5 * outProduct( dipole, ri );
470 >            qpole += 0.5 * outProduct( ri, dipole );
471 >          }
472 >
473 >          if ( ma.isQuadrupole() ) {
474 >            qpole += atom->getQuadrupole() * debyeToCm * angstromToM;          
475 >          }
476 >        }
477 >      }
478 >        
479 > #ifdef IS_MPI
480 >      MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(),
481 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
482 > #endif
483 >      
484 >      snap->setSystemQuadrupole(qpole);
485 >    }
486      
487 <    stat[Stats::KINETIC_ENERGY] = getKinetic();
488 <    stat[Stats::POTENTIAL_ENERGY] = getPotential();
225 <    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
226 <    stat[Stats::TEMPERATURE] = getTemperature();
227 <    stat[Stats::PRESSURE] = getPressure();
228 <    stat[Stats::VOLUME] = getVolume();      
487 >    return snap->getSystemQuadrupole();
488 >  }
489  
490 <    Mat3x3d tensor =getPressureTensor();
491 <    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
492 <    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
493 <    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
490 >  // Returns the Heat Flux Vector for the system
491 >  Vector3d Thermo::getHeatFlux(){
492 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
493 >    SimInfo::MoleculeIterator miter;
494 >    vector<StuntDouble*>::iterator iiter;
495 >    Molecule* mol;
496 >    StuntDouble* sd;    
497 >    RigidBody::AtomIterator ai;
498 >    Atom* atom;      
499 >    Vector3d vel;
500 >    Vector3d angMom;
501 >    Mat3x3d I;
502 >    int i;
503 >    int j;
504 >    int k;
505 >    RealType mass;
506  
507 +    Vector3d x_a;
508 +    RealType kinetic;
509 +    RealType potential;
510 +    RealType eatom;
511 +    // Convective portion of the heat flux
512 +    Vector3d heatFluxJc = V3Zero;
513  
514 <    /**@todo need refactorying*/
515 <    //Conserved Quantity is set by integrator and time is set by setTime
514 >    /* Calculate convective portion of the heat flux */
515 >    for (mol = info_->beginMolecule(miter); mol != NULL;
516 >         mol = info_->nextMolecule(miter)) {
517 >      
518 >      for (sd = mol->beginIntegrableObject(iiter);
519 >           sd != NULL;
520 >           sd = mol->nextIntegrableObject(iiter)) {
521 >        
522 >        mass = sd->getMass();
523 >        vel = sd->getVel();
524 >
525 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
526 >        
527 >        if (sd->isDirectional()) {
528 >          angMom = sd->getJ();
529 >          I = sd->getI();
530 >
531 >          if (sd->isLinear()) {
532 >            i = sd->linearAxis();
533 >            j = (i + 1) % 3;
534 >            k = (i + 2) % 3;
535 >            kinetic += angMom[j] * angMom[j] / I(j, j)
536 >              + angMom[k] * angMom[k] / I(k, k);
537 >          } else {                        
538 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
539 >              + angMom[1]*angMom[1]/I(1, 1)
540 >              + angMom[2]*angMom[2]/I(2, 2);
541 >          }
542 >        }
543 >
544 >        potential = 0.0;
545 >
546 >        if (sd->isRigidBody()) {
547 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
548 >          for (atom = rb->beginAtom(ai); atom != NULL;
549 >               atom = rb->nextAtom(ai)) {
550 >            potential +=  atom->getParticlePot();
551 >          }          
552 >        } else {
553 >          potential = sd->getParticlePot();
554 >        }
555 >
556 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
557 >        // The potential may not be a 1/2 factor
558 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
559 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
560 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
561 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
562 >      }
563 >    }
564 >
565 >    /* The J_v vector is reduced in the forceManager so everyone has
566 >     *  the global Jv. Jc is computed over the local atoms and must be
567 >     *  reduced among all processors.
568 >     */
569 > #ifdef IS_MPI
570 >    MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE,
571 >                  MPI_SUM, MPI_COMM_WORLD);
572 > #endif
573      
574 +    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
575 +
576 +    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
577 +      PhysicalConstants::energyConvert;
578 +        
579 +    // Correct for the fact the flux is 1/V (Jc + Jv)
580 +    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
581    }
582  
583 < } //end namespace oopse
583 >
584 >  Vector3d Thermo::getComVel(){
585 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
586 >
587 >    if (!snap->hasCOMvel) {
588 >
589 >      SimInfo::MoleculeIterator i;
590 >      Molecule* mol;
591 >      
592 >      Vector3d comVel(0.0);
593 >      RealType totalMass(0.0);
594 >      
595 >      for (mol = info_->beginMolecule(i); mol != NULL;
596 >           mol = info_->nextMolecule(i)) {
597 >        RealType mass = mol->getMass();
598 >        totalMass += mass;
599 >        comVel += mass * mol->getComVel();
600 >      }  
601 >      
602 > #ifdef IS_MPI
603 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
604 >                    MPI_SUM, MPI_COMM_WORLD);
605 >      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
606 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
607 > #endif
608 >      
609 >      comVel /= totalMass;
610 >      snap->setCOMvel(comVel);
611 >    }
612 >    return snap->getCOMvel();
613 >  }
614 >
615 >  Vector3d Thermo::getCom(){
616 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
617 >
618 >    if (!snap->hasCOM) {
619 >      
620 >      SimInfo::MoleculeIterator i;
621 >      Molecule* mol;
622 >      
623 >      Vector3d com(0.0);
624 >      RealType totalMass(0.0);
625 >      
626 >      for (mol = info_->beginMolecule(i); mol != NULL;
627 >           mol = info_->nextMolecule(i)) {
628 >        RealType mass = mol->getMass();
629 >        totalMass += mass;
630 >        com += mass * mol->getCom();
631 >      }  
632 >      
633 > #ifdef IS_MPI
634 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
635 >                    MPI_SUM, MPI_COMM_WORLD);
636 >      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
637 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
638 > #endif
639 >      
640 >      com /= totalMass;
641 >      snap->setCOM(com);
642 >    }
643 >    return snap->getCOM();
644 >  }        
645 >
646 >  /**
647 >   * Returns center of mass and center of mass velocity in one
648 >   * function call.
649 >   */  
650 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
651 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
652 >
653 >    if (!(snap->hasCOM && snap->hasCOMvel)) {
654 >
655 >      SimInfo::MoleculeIterator i;
656 >      Molecule* mol;
657 >      
658 >      RealType totalMass(0.0);
659 >      
660 >      com = 0.0;
661 >      comVel = 0.0;
662 >      
663 >      for (mol = info_->beginMolecule(i); mol != NULL;
664 >           mol = info_->nextMolecule(i)) {
665 >        RealType mass = mol->getMass();
666 >        totalMass += mass;
667 >        com += mass * mol->getCom();
668 >        comVel += mass * mol->getComVel();          
669 >      }  
670 >      
671 > #ifdef IS_MPI
672 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
673 >                    MPI_SUM, MPI_COMM_WORLD);
674 >      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
675 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
676 >      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
677 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
678 > #endif
679 >      
680 >      com /= totalMass;
681 >      comVel /= totalMass;
682 >      snap->setCOM(com);
683 >      snap->setCOMvel(comVel);
684 >    }    
685 >    com = snap->getCOM();
686 >    comVel = snap->getCOMvel();
687 >    return;
688 >  }        
689 >  
690 >  /**
691 >   * \brief Return inertia tensor for entire system and angular momentum
692 >   *  Vector.
693 >   *
694 >   *
695 >   *
696 >   *    [  Ixx -Ixy  -Ixz ]
697 >   * I =| -Iyx  Iyy  -Iyz |
698 >   *    [ -Izx -Iyz   Izz ]
699 >   */
700 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
701 >                                Vector3d &angularMomentum){
702 >
703 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
704 >    
705 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
706 >      
707 >      RealType xx = 0.0;
708 >      RealType yy = 0.0;
709 >      RealType zz = 0.0;
710 >      RealType xy = 0.0;
711 >      RealType xz = 0.0;
712 >      RealType yz = 0.0;
713 >      Vector3d com(0.0);
714 >      Vector3d comVel(0.0);
715 >      
716 >      getComAll(com, comVel);
717 >      
718 >      SimInfo::MoleculeIterator i;
719 >      Molecule* mol;
720 >      
721 >      Vector3d thisq(0.0);
722 >      Vector3d thisv(0.0);
723 >      
724 >      RealType thisMass = 0.0;
725 >      
726 >      for (mol = info_->beginMolecule(i); mol != NULL;
727 >           mol = info_->nextMolecule(i)) {
728 >        
729 >        thisq = mol->getCom()-com;
730 >        thisv = mol->getComVel()-comVel;
731 >        thisMass = mol->getMass();
732 >        // Compute moment of intertia coefficients.
733 >        xx += thisq[0]*thisq[0]*thisMass;
734 >        yy += thisq[1]*thisq[1]*thisMass;
735 >        zz += thisq[2]*thisq[2]*thisMass;
736 >        
737 >        // compute products of intertia
738 >        xy += thisq[0]*thisq[1]*thisMass;
739 >        xz += thisq[0]*thisq[2]*thisMass;
740 >        yz += thisq[1]*thisq[2]*thisMass;
741 >        
742 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
743 >      }
744 >      
745 >      inertiaTensor(0,0) = yy + zz;
746 >      inertiaTensor(0,1) = -xy;
747 >      inertiaTensor(0,2) = -xz;
748 >      inertiaTensor(1,0) = -xy;
749 >      inertiaTensor(1,1) = xx + zz;
750 >      inertiaTensor(1,2) = -yz;
751 >      inertiaTensor(2,0) = -xz;
752 >      inertiaTensor(2,1) = -yz;
753 >      inertiaTensor(2,2) = xx + yy;
754 >      
755 > #ifdef IS_MPI
756 >      MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(),
757 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
758 >      MPI_Allreduce(MPI_IN_PLACE,
759 >                    angularMomentum.getArrayPointer(), 3,
760 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
761 > #endif
762 >      
763 >      snap->setCOMw(angularMomentum);
764 >      snap->setInertiaTensor(inertiaTensor);
765 >    }
766 >    
767 >    angularMomentum = snap->getCOMw();
768 >    inertiaTensor = snap->getInertiaTensor();
769 >    
770 >    return;
771 >  }
772 >
773 >
774 >  Mat3x3d Thermo::getBoundingBox(){
775 >    
776 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
777 >    
778 >    if (!(snap->hasBoundingBox)) {
779 >      
780 >      SimInfo::MoleculeIterator i;
781 >      Molecule::RigidBodyIterator ri;
782 >      Molecule::AtomIterator ai;
783 >      Molecule* mol;
784 >      RigidBody* rb;
785 >      Atom* atom;
786 >      Vector3d pos, bMax, bMin;
787 >      int index = 0;
788 >      
789 >      for (mol = info_->beginMolecule(i); mol != NULL;
790 >           mol = info_->nextMolecule(i)) {
791 >        
792 >        //change the positions of atoms which belong to the rigidbodies
793 >        for (rb = mol->beginRigidBody(ri); rb != NULL;
794 >             rb = mol->nextRigidBody(ri)) {          
795 >          rb->updateAtoms();
796 >        }
797 >        
798 >        for(atom = mol->beginAtom(ai); atom != NULL;
799 >            atom = mol->nextAtom(ai)) {
800 >          
801 >          pos = atom->getPos();
802 >
803 >          if (index == 0) {
804 >            bMax = pos;
805 >            bMin = pos;
806 >          } else {
807 >            for (int i = 0; i < 3; i++) {
808 >              bMax[i] = max(bMax[i], pos[i]);
809 >              bMin[i] = min(bMin[i], pos[i]);
810 >            }
811 >          }
812 >          index++;
813 >        }
814 >      }
815 >      
816 > #ifdef IS_MPI
817 >      MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE,
818 >                    MPI_MAX, MPI_COMM_WORLD);
819 >
820 >      MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE,
821 >                    MPI_MIN, MPI_COMM_WORLD);
822 > #endif
823 >      Mat3x3d bBox = Mat3x3d(0.0);
824 >      for (int i = 0; i < 3; i++) {          
825 >        bBox(i,i) = bMax[i] - bMin[i];
826 >      }
827 >      snap->setBoundingBox(bBox);
828 >    }
829 >    
830 >    return snap->getBoundingBox();    
831 >  }
832 >  
833 >  
834 >  // Returns the angular momentum of the system
835 >  Vector3d Thermo::getAngularMomentum(){
836 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
837 >    
838 >    if (!snap->hasCOMw) {
839 >      
840 >      Vector3d com(0.0);
841 >      Vector3d comVel(0.0);
842 >      Vector3d angularMomentum(0.0);
843 >      
844 >      getComAll(com, comVel);
845 >      
846 >      SimInfo::MoleculeIterator i;
847 >      Molecule* mol;
848 >      
849 >      Vector3d thisr(0.0);
850 >      Vector3d thisp(0.0);
851 >      
852 >      RealType thisMass;
853 >      
854 >      for (mol = info_->beginMolecule(i); mol != NULL;
855 >           mol = info_->nextMolecule(i)) {
856 >        thisMass = mol->getMass();
857 >        thisr = mol->getCom() - com;
858 >        thisp = (mol->getComVel() - comVel) * thisMass;
859 >        
860 >        angularMomentum += cross( thisr, thisp );      
861 >      }  
862 >      
863 > #ifdef IS_MPI
864 >      MPI_Allreduce(MPI_IN_PLACE,
865 >                    angularMomentum.getArrayPointer(), 3,
866 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
867 > #endif
868 >      
869 >      snap->setCOMw(angularMomentum);
870 >    }
871 >    
872 >    return snap->getCOMw();
873 >  }
874 >  
875 >  
876 >  /**
877 >   * Returns the Volume of the system based on a ellipsoid with
878 >   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
879 >   * where R_i are related to the principle inertia moments
880 >   *  R_i = sqrt(C*I_i/N), this reduces to
881 >   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
882 >   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
883 >   */
884 >  RealType Thermo::getGyrationalVolume(){
885 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
886 >    
887 >    if (!snap->hasGyrationalVolume) {
888 >      
889 >      Mat3x3d intTensor;
890 >      RealType det;
891 >      Vector3d dummyAngMom;
892 >      RealType sysconstants;
893 >      RealType geomCnst;
894 >      RealType volume;
895 >      
896 >      geomCnst = 3.0/2.0;
897 >      /* Get the inertial tensor and angular momentum for free*/
898 >      getInertiaTensor(intTensor, dummyAngMom);
899 >      
900 >      det = intTensor.determinant();
901 >      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
902 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
903 >
904 >      snap->setGyrationalVolume(volume);
905 >    }
906 >    return snap->getGyrationalVolume();
907 >  }
908 >  
909 >  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
910 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
911 >
912 >    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
913 >    
914 >      Mat3x3d intTensor;
915 >      Vector3d dummyAngMom;
916 >      RealType sysconstants;
917 >      RealType geomCnst;
918 >      
919 >      geomCnst = 3.0/2.0;
920 >      /* Get the inertia tensor and angular momentum for free*/
921 >      this->getInertiaTensor(intTensor, dummyAngMom);
922 >      
923 >      detI = intTensor.determinant();
924 >      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
925 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
926 >      snap->setGyrationalVolume(volume);
927 >    } else {
928 >      volume = snap->getGyrationalVolume();
929 >      detI = snap->getInertiaTensor().determinant();
930 >    }
931 >    return;
932 >  }
933 >  
934 >  RealType Thermo::getTaggedAtomPairDistance(){
935 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
936 >    Globals* simParams = info_->getSimParams();
937 >    
938 >    if (simParams->haveTaggedAtomPair() &&
939 >        simParams->havePrintTaggedPairDistance()) {
940 >      if ( simParams->getPrintTaggedPairDistance()) {
941 >        
942 >        pair<int, int> tap = simParams->getTaggedAtomPair();
943 >        Vector3d pos1, pos2, rab;
944 >        
945 > #ifdef IS_MPI        
946 >        int mol1 = info_->getGlobalMolMembership(tap.first);
947 >        int mol2 = info_->getGlobalMolMembership(tap.second);
948 >
949 >        int proc1 = info_->getMolToProc(mol1);
950 >        int proc2 = info_->getMolToProc(mol2);
951 >
952 >        RealType data[3];
953 >        if (proc1 == worldRank) {
954 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
955 >          pos1 = sd1->getPos();
956 >          data[0] = pos1.x();
957 >          data[1] = pos1.y();
958 >          data[2] = pos1.z();          
959 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
960 >        } else {
961 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
962 >          pos1 = Vector3d(data);
963 >        }
964 >
965 >        if (proc2 == worldRank) {
966 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
967 >          pos2 = sd2->getPos();
968 >          data[0] = pos2.x();
969 >          data[1] = pos2.y();
970 >          data[2] = pos2.z();  
971 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
972 >        } else {
973 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
974 >          pos2 = Vector3d(data);
975 >        }
976 > #else
977 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
978 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
979 >        pos1 = at1->getPos();
980 >        pos2 = at2->getPos();
981 > #endif        
982 >        rab = pos2 - pos1;
983 >        currSnapshot->wrapVector(rab);
984 >        return rab.length();
985 >      }
986 >      return 0.0;    
987 >    }
988 >    return 0.0;
989 >  }
990 >
991 >  RealType Thermo::getHullVolume(){
992 > #ifdef HAVE_QHULL    
993 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
994 >    if (!snap->hasHullVolume) {
995 >      Hull* surfaceMesh_;
996 >      
997 >      Globals* simParams = info_->getSimParams();
998 >      const std::string ht = simParams->getHULL_Method();
999 >      
1000 >      if (ht == "Convex") {
1001 >        surfaceMesh_ = new ConvexHull();
1002 >      } else if (ht == "AlphaShape") {
1003 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
1004 >      } else {
1005 >        return 0.0;
1006 >      }
1007 >      
1008 >      // Build a vector of stunt doubles to determine if they are
1009 >      // surface atoms
1010 >      std::vector<StuntDouble*> localSites_;
1011 >      Molecule* mol;
1012 >      StuntDouble* sd;
1013 >      SimInfo::MoleculeIterator i;
1014 >      Molecule::IntegrableObjectIterator  j;
1015 >      
1016 >      for (mol = info_->beginMolecule(i); mol != NULL;
1017 >           mol = info_->nextMolecule(i)) {          
1018 >        for (sd = mol->beginIntegrableObject(j);
1019 >             sd != NULL;
1020 >             sd = mol->nextIntegrableObject(j)) {  
1021 >          localSites_.push_back(sd);
1022 >        }
1023 >      }  
1024 >      
1025 >      // Compute surface Mesh
1026 >      surfaceMesh_->computeHull(localSites_);
1027 >      snap->setHullVolume(surfaceMesh_->getVolume());
1028 >      
1029 >      delete surfaceMesh_;
1030 >    }
1031 >    
1032 >    return snap->getHullVolume();
1033 > #else
1034 >    return 0.0;
1035 > #endif
1036 >  }
1037 >
1038 >
1039 > }

Comparing trunk/src/brains/Thermo.cpp (property svn:keywords):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 2046 by gezelter, Tue Dec 2 22:11:04 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines