1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
#ifdef IS_MPI |
44 |
#include <mpi.h> |
45 |
#endif //is_mpi |
46 |
|
47 |
#include <math.h> |
48 |
#include <iostream> |
49 |
|
50 |
#include "brains/Thermo.hpp" |
51 |
#include "primitives/Molecule.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/PhysicalConstants.hpp" |
54 |
#include "types/FixedChargeAdapter.hpp" |
55 |
#include "types/FluctuatingChargeAdapter.hpp" |
56 |
#include "types/MultipoleAdapter.hpp" |
57 |
#ifdef HAVE_QHULL |
58 |
#include "math/ConvexHull.hpp" |
59 |
#include "math/AlphaHull.hpp" |
60 |
#endif |
61 |
|
62 |
using namespace std; |
63 |
namespace OpenMD { |
64 |
|
65 |
RealType Thermo::getTranslationalKinetic() { |
66 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
67 |
|
68 |
if (!snap->hasTranslationalKineticEnergy) { |
69 |
SimInfo::MoleculeIterator miter; |
70 |
vector<StuntDouble*>::iterator iiter; |
71 |
Molecule* mol; |
72 |
StuntDouble* sd; |
73 |
Vector3d vel; |
74 |
RealType mass; |
75 |
RealType kinetic(0.0); |
76 |
|
77 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
78 |
mol = info_->nextMolecule(miter)) { |
79 |
|
80 |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
81 |
sd = mol->nextIntegrableObject(iiter)) { |
82 |
|
83 |
mass = sd->getMass(); |
84 |
vel = sd->getVel(); |
85 |
|
86 |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
87 |
|
88 |
} |
89 |
} |
90 |
|
91 |
#ifdef IS_MPI |
92 |
MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE, |
93 |
MPI_SUM, MPI_COMM_WORLD); |
94 |
#endif |
95 |
|
96 |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
97 |
|
98 |
|
99 |
snap->setTranslationalKineticEnergy(kinetic); |
100 |
} |
101 |
return snap->getTranslationalKineticEnergy(); |
102 |
} |
103 |
|
104 |
RealType Thermo::getRotationalKinetic() { |
105 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
106 |
|
107 |
if (!snap->hasRotationalKineticEnergy) { |
108 |
SimInfo::MoleculeIterator miter; |
109 |
vector<StuntDouble*>::iterator iiter; |
110 |
Molecule* mol; |
111 |
StuntDouble* sd; |
112 |
Vector3d angMom; |
113 |
Mat3x3d I; |
114 |
int i, j, k; |
115 |
RealType kinetic(0.0); |
116 |
|
117 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
118 |
mol = info_->nextMolecule(miter)) { |
119 |
|
120 |
for (sd = mol->beginIntegrableObject(iiter); sd != NULL; |
121 |
sd = mol->nextIntegrableObject(iiter)) { |
122 |
|
123 |
if (sd->isDirectional()) { |
124 |
angMom = sd->getJ(); |
125 |
I = sd->getI(); |
126 |
|
127 |
if (sd->isLinear()) { |
128 |
i = sd->linearAxis(); |
129 |
j = (i + 1) % 3; |
130 |
k = (i + 2) % 3; |
131 |
kinetic += angMom[j] * angMom[j] / I(j, j) |
132 |
+ angMom[k] * angMom[k] / I(k, k); |
133 |
} else { |
134 |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
135 |
+ angMom[1]*angMom[1]/I(1, 1) |
136 |
+ angMom[2]*angMom[2]/I(2, 2); |
137 |
} |
138 |
} |
139 |
} |
140 |
} |
141 |
|
142 |
#ifdef IS_MPI |
143 |
MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE, |
144 |
MPI_SUM, MPI_COMM_WORLD); |
145 |
#endif |
146 |
|
147 |
kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert; |
148 |
|
149 |
snap->setRotationalKineticEnergy(kinetic); |
150 |
} |
151 |
return snap->getRotationalKineticEnergy(); |
152 |
} |
153 |
|
154 |
|
155 |
|
156 |
RealType Thermo::getKinetic() { |
157 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
158 |
|
159 |
if (!snap->hasKineticEnergy) { |
160 |
RealType ke = getTranslationalKinetic() + getRotationalKinetic(); |
161 |
snap->setKineticEnergy(ke); |
162 |
} |
163 |
return snap->getKineticEnergy(); |
164 |
} |
165 |
|
166 |
RealType Thermo::getPotential() { |
167 |
|
168 |
// ForceManager computes the potential and stores it in the |
169 |
// Snapshot. All we have to do is report it. |
170 |
|
171 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
172 |
return snap->getPotentialEnergy(); |
173 |
} |
174 |
|
175 |
RealType Thermo::getTotalEnergy() { |
176 |
|
177 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
178 |
|
179 |
if (!snap->hasTotalEnergy) { |
180 |
snap->setTotalEnergy(this->getKinetic() + this->getPotential()); |
181 |
} |
182 |
|
183 |
return snap->getTotalEnergy(); |
184 |
} |
185 |
|
186 |
RealType Thermo::getTemperature() { |
187 |
|
188 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
189 |
|
190 |
if (!snap->hasTemperature) { |
191 |
|
192 |
RealType temperature = ( 2.0 * this->getKinetic() ) |
193 |
/ (info_->getNdf()* PhysicalConstants::kb ); |
194 |
|
195 |
snap->setTemperature(temperature); |
196 |
} |
197 |
|
198 |
return snap->getTemperature(); |
199 |
} |
200 |
|
201 |
RealType Thermo::getElectronicTemperature() { |
202 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
203 |
|
204 |
if (!snap->hasElectronicTemperature) { |
205 |
|
206 |
SimInfo::MoleculeIterator miter; |
207 |
vector<Atom*>::iterator iiter; |
208 |
Molecule* mol; |
209 |
Atom* atom; |
210 |
RealType cvel; |
211 |
RealType cmass; |
212 |
RealType kinetic(0.0); |
213 |
RealType eTemp; |
214 |
|
215 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
216 |
mol = info_->nextMolecule(miter)) { |
217 |
|
218 |
for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL; |
219 |
atom = mol->nextFluctuatingCharge(iiter)) { |
220 |
|
221 |
cmass = atom->getChargeMass(); |
222 |
cvel = atom->getFlucQVel(); |
223 |
|
224 |
kinetic += cmass * cvel * cvel; |
225 |
|
226 |
} |
227 |
} |
228 |
|
229 |
#ifdef IS_MPI |
230 |
MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE, |
231 |
MPI_SUM, MPI_COMM_WORLD); |
232 |
#endif |
233 |
|
234 |
kinetic *= 0.5; |
235 |
eTemp = (2.0 * kinetic) / |
236 |
(info_->getNFluctuatingCharges() * PhysicalConstants::kb ); |
237 |
|
238 |
snap->setElectronicTemperature(eTemp); |
239 |
} |
240 |
|
241 |
return snap->getElectronicTemperature(); |
242 |
} |
243 |
|
244 |
|
245 |
RealType Thermo::getVolume() { |
246 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
247 |
return snap->getVolume(); |
248 |
} |
249 |
|
250 |
RealType Thermo::getPressure() { |
251 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
252 |
|
253 |
if (!snap->hasPressure) { |
254 |
// Relies on the calculation of the full molecular pressure tensor |
255 |
|
256 |
Mat3x3d tensor; |
257 |
RealType pressure; |
258 |
|
259 |
tensor = getPressureTensor(); |
260 |
|
261 |
pressure = PhysicalConstants::pressureConvert * |
262 |
(tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0; |
263 |
|
264 |
snap->setPressure(pressure); |
265 |
} |
266 |
|
267 |
return snap->getPressure(); |
268 |
} |
269 |
|
270 |
Mat3x3d Thermo::getPressureTensor() { |
271 |
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
272 |
// routine derived via viral theorem description in: |
273 |
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
274 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
275 |
|
276 |
if (!snap->hasPressureTensor) { |
277 |
|
278 |
Mat3x3d pressureTensor; |
279 |
Mat3x3d p_tens(0.0); |
280 |
RealType mass; |
281 |
Vector3d vcom; |
282 |
|
283 |
SimInfo::MoleculeIterator i; |
284 |
vector<StuntDouble*>::iterator j; |
285 |
Molecule* mol; |
286 |
StuntDouble* sd; |
287 |
for (mol = info_->beginMolecule(i); mol != NULL; |
288 |
mol = info_->nextMolecule(i)) { |
289 |
|
290 |
for (sd = mol->beginIntegrableObject(j); sd != NULL; |
291 |
sd = mol->nextIntegrableObject(j)) { |
292 |
|
293 |
mass = sd->getMass(); |
294 |
vcom = sd->getVel(); |
295 |
p_tens += mass * outProduct(vcom, vcom); |
296 |
} |
297 |
} |
298 |
|
299 |
#ifdef IS_MPI |
300 |
MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9, |
301 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
302 |
#endif |
303 |
|
304 |
RealType volume = this->getVolume(); |
305 |
Mat3x3d stressTensor = snap->getStressTensor(); |
306 |
|
307 |
pressureTensor = (p_tens + |
308 |
PhysicalConstants::energyConvert * stressTensor)/volume; |
309 |
|
310 |
snap->setPressureTensor(pressureTensor); |
311 |
} |
312 |
return snap->getPressureTensor(); |
313 |
} |
314 |
|
315 |
|
316 |
|
317 |
|
318 |
Vector3d Thermo::getSystemDipole() { |
319 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
320 |
|
321 |
if (!snap->hasSystemDipole) { |
322 |
SimInfo::MoleculeIterator miter; |
323 |
vector<Atom*>::iterator aiter; |
324 |
Molecule* mol; |
325 |
Atom* atom; |
326 |
RealType charge; |
327 |
Vector3d ri(0.0); |
328 |
Vector3d dipoleVector(0.0); |
329 |
Vector3d nPos(0.0); |
330 |
Vector3d pPos(0.0); |
331 |
RealType nChg(0.0); |
332 |
RealType pChg(0.0); |
333 |
int nCount = 0; |
334 |
int pCount = 0; |
335 |
|
336 |
RealType chargeToC = 1.60217733e-19; |
337 |
RealType angstromToM = 1.0e-10; |
338 |
RealType debyeToCm = 3.33564095198e-30; |
339 |
|
340 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
341 |
mol = info_->nextMolecule(miter)) { |
342 |
|
343 |
for (atom = mol->beginAtom(aiter); atom != NULL; |
344 |
atom = mol->nextAtom(aiter)) { |
345 |
|
346 |
charge = 0.0; |
347 |
|
348 |
FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); |
349 |
if ( fca.isFixedCharge() ) { |
350 |
charge = fca.getCharge(); |
351 |
} |
352 |
|
353 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); |
354 |
if ( fqa.isFluctuatingCharge() ) { |
355 |
charge += atom->getFlucQPos(); |
356 |
} |
357 |
|
358 |
charge *= chargeToC; |
359 |
|
360 |
ri = atom->getPos(); |
361 |
snap->wrapVector(ri); |
362 |
ri *= angstromToM; |
363 |
|
364 |
if (charge < 0.0) { |
365 |
nPos += ri; |
366 |
nChg -= charge; |
367 |
nCount++; |
368 |
} else if (charge > 0.0) { |
369 |
pPos += ri; |
370 |
pChg += charge; |
371 |
pCount++; |
372 |
} |
373 |
|
374 |
if (atom->isDipole()) { |
375 |
dipoleVector += atom->getDipole() * debyeToCm; |
376 |
} |
377 |
} |
378 |
} |
379 |
|
380 |
|
381 |
#ifdef IS_MPI |
382 |
MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE, |
383 |
MPI_SUM, MPI_COMM_WORLD); |
384 |
MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE, |
385 |
MPI_SUM, MPI_COMM_WORLD); |
386 |
|
387 |
MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER, |
388 |
MPI_SUM, MPI_COMM_WORLD); |
389 |
MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER, |
390 |
MPI_SUM, MPI_COMM_WORLD); |
391 |
|
392 |
MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3, |
393 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
394 |
MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3, |
395 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
396 |
|
397 |
MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(), |
398 |
3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
399 |
#endif |
400 |
|
401 |
// first load the accumulated dipole moment (if dipoles were present) |
402 |
Vector3d boxDipole = dipoleVector; |
403 |
// now include the dipole moment due to charges |
404 |
// use the lesser of the positive and negative charge totals |
405 |
RealType chg_value = nChg <= pChg ? nChg : pChg; |
406 |
|
407 |
// find the average positions |
408 |
if (pCount > 0 && nCount > 0 ) { |
409 |
pPos /= pCount; |
410 |
nPos /= nCount; |
411 |
} |
412 |
|
413 |
// dipole is from the negative to the positive (physics notation) |
414 |
boxDipole += (pPos - nPos) * chg_value; |
415 |
snap->setSystemDipole(boxDipole); |
416 |
} |
417 |
|
418 |
return snap->getSystemDipole(); |
419 |
} |
420 |
|
421 |
|
422 |
Mat3x3d Thermo::getSystemQuadrupole() { |
423 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
424 |
|
425 |
if (!snap->hasSystemQuadrupole) { |
426 |
SimInfo::MoleculeIterator miter; |
427 |
vector<Atom*>::iterator aiter; |
428 |
Molecule* mol; |
429 |
Atom* atom; |
430 |
RealType charge; |
431 |
Vector3d ri(0.0); |
432 |
Vector3d dipole(0.0); |
433 |
Mat3x3d qpole(0.0); |
434 |
|
435 |
RealType chargeToC = 1.60217733e-19; |
436 |
RealType angstromToM = 1.0e-10; |
437 |
RealType debyeToCm = 3.33564095198e-30; |
438 |
|
439 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
440 |
mol = info_->nextMolecule(miter)) { |
441 |
|
442 |
for (atom = mol->beginAtom(aiter); atom != NULL; |
443 |
atom = mol->nextAtom(aiter)) { |
444 |
|
445 |
ri = atom->getPos(); |
446 |
snap->wrapVector(ri); |
447 |
ri *= angstromToM; |
448 |
|
449 |
charge = 0.0; |
450 |
|
451 |
FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType()); |
452 |
if ( fca.isFixedCharge() ) { |
453 |
charge = fca.getCharge(); |
454 |
} |
455 |
|
456 |
FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType()); |
457 |
if ( fqa.isFluctuatingCharge() ) { |
458 |
charge += atom->getFlucQPos(); |
459 |
} |
460 |
|
461 |
charge *= chargeToC; |
462 |
|
463 |
qpole += 0.5 * charge * outProduct(ri, ri); |
464 |
|
465 |
MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType()); |
466 |
|
467 |
if ( ma.isDipole() ) { |
468 |
dipole = atom->getDipole() * debyeToCm; |
469 |
qpole += 0.5 * outProduct( dipole, ri ); |
470 |
qpole += 0.5 * outProduct( ri, dipole ); |
471 |
} |
472 |
|
473 |
if ( ma.isQuadrupole() ) { |
474 |
qpole += atom->getQuadrupole() * debyeToCm * angstromToM; |
475 |
} |
476 |
} |
477 |
} |
478 |
|
479 |
#ifdef IS_MPI |
480 |
MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(), |
481 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
482 |
#endif |
483 |
|
484 |
snap->setSystemQuadrupole(qpole); |
485 |
} |
486 |
|
487 |
return snap->getSystemQuadrupole(); |
488 |
} |
489 |
|
490 |
// Returns the Heat Flux Vector for the system |
491 |
Vector3d Thermo::getHeatFlux(){ |
492 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
493 |
SimInfo::MoleculeIterator miter; |
494 |
vector<StuntDouble*>::iterator iiter; |
495 |
Molecule* mol; |
496 |
StuntDouble* sd; |
497 |
RigidBody::AtomIterator ai; |
498 |
Atom* atom; |
499 |
Vector3d vel; |
500 |
Vector3d angMom; |
501 |
Mat3x3d I; |
502 |
int i; |
503 |
int j; |
504 |
int k; |
505 |
RealType mass; |
506 |
|
507 |
Vector3d x_a; |
508 |
RealType kinetic; |
509 |
RealType potential; |
510 |
RealType eatom; |
511 |
// Convective portion of the heat flux |
512 |
Vector3d heatFluxJc = V3Zero; |
513 |
|
514 |
/* Calculate convective portion of the heat flux */ |
515 |
for (mol = info_->beginMolecule(miter); mol != NULL; |
516 |
mol = info_->nextMolecule(miter)) { |
517 |
|
518 |
for (sd = mol->beginIntegrableObject(iiter); |
519 |
sd != NULL; |
520 |
sd = mol->nextIntegrableObject(iiter)) { |
521 |
|
522 |
mass = sd->getMass(); |
523 |
vel = sd->getVel(); |
524 |
|
525 |
kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
526 |
|
527 |
if (sd->isDirectional()) { |
528 |
angMom = sd->getJ(); |
529 |
I = sd->getI(); |
530 |
|
531 |
if (sd->isLinear()) { |
532 |
i = sd->linearAxis(); |
533 |
j = (i + 1) % 3; |
534 |
k = (i + 2) % 3; |
535 |
kinetic += angMom[j] * angMom[j] / I(j, j) |
536 |
+ angMom[k] * angMom[k] / I(k, k); |
537 |
} else { |
538 |
kinetic += angMom[0]*angMom[0]/I(0, 0) |
539 |
+ angMom[1]*angMom[1]/I(1, 1) |
540 |
+ angMom[2]*angMom[2]/I(2, 2); |
541 |
} |
542 |
} |
543 |
|
544 |
potential = 0.0; |
545 |
|
546 |
if (sd->isRigidBody()) { |
547 |
RigidBody* rb = dynamic_cast<RigidBody*>(sd); |
548 |
for (atom = rb->beginAtom(ai); atom != NULL; |
549 |
atom = rb->nextAtom(ai)) { |
550 |
potential += atom->getParticlePot(); |
551 |
} |
552 |
} else { |
553 |
potential = sd->getParticlePot(); |
554 |
} |
555 |
|
556 |
potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2 |
557 |
// The potential may not be a 1/2 factor |
558 |
eatom = (kinetic + potential)/2.0; // amu A^2/fs^2 |
559 |
heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3 |
560 |
heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3 |
561 |
heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3 |
562 |
} |
563 |
} |
564 |
|
565 |
/* The J_v vector is reduced in the forceManager so everyone has |
566 |
* the global Jv. Jc is computed over the local atoms and must be |
567 |
* reduced among all processors. |
568 |
*/ |
569 |
#ifdef IS_MPI |
570 |
MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE, |
571 |
MPI_SUM, MPI_COMM_WORLD); |
572 |
#endif |
573 |
|
574 |
// (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3 |
575 |
|
576 |
Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() * |
577 |
PhysicalConstants::energyConvert; |
578 |
|
579 |
// Correct for the fact the flux is 1/V (Jc + Jv) |
580 |
return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3 |
581 |
} |
582 |
|
583 |
|
584 |
Vector3d Thermo::getComVel(){ |
585 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
586 |
|
587 |
if (!snap->hasCOMvel) { |
588 |
|
589 |
SimInfo::MoleculeIterator i; |
590 |
Molecule* mol; |
591 |
|
592 |
Vector3d comVel(0.0); |
593 |
RealType totalMass(0.0); |
594 |
|
595 |
for (mol = info_->beginMolecule(i); mol != NULL; |
596 |
mol = info_->nextMolecule(i)) { |
597 |
RealType mass = mol->getMass(); |
598 |
totalMass += mass; |
599 |
comVel += mass * mol->getComVel(); |
600 |
} |
601 |
|
602 |
#ifdef IS_MPI |
603 |
MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE, |
604 |
MPI_SUM, MPI_COMM_WORLD); |
605 |
MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3, |
606 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
607 |
#endif |
608 |
|
609 |
comVel /= totalMass; |
610 |
snap->setCOMvel(comVel); |
611 |
} |
612 |
return snap->getCOMvel(); |
613 |
} |
614 |
|
615 |
Vector3d Thermo::getCom(){ |
616 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
617 |
|
618 |
if (!snap->hasCOM) { |
619 |
|
620 |
SimInfo::MoleculeIterator i; |
621 |
Molecule* mol; |
622 |
|
623 |
Vector3d com(0.0); |
624 |
RealType totalMass(0.0); |
625 |
|
626 |
for (mol = info_->beginMolecule(i); mol != NULL; |
627 |
mol = info_->nextMolecule(i)) { |
628 |
RealType mass = mol->getMass(); |
629 |
totalMass += mass; |
630 |
com += mass * mol->getCom(); |
631 |
} |
632 |
|
633 |
#ifdef IS_MPI |
634 |
MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE, |
635 |
MPI_SUM, MPI_COMM_WORLD); |
636 |
MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3, |
637 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
638 |
#endif |
639 |
|
640 |
com /= totalMass; |
641 |
snap->setCOM(com); |
642 |
} |
643 |
return snap->getCOM(); |
644 |
} |
645 |
|
646 |
/** |
647 |
* Returns center of mass and center of mass velocity in one |
648 |
* function call. |
649 |
*/ |
650 |
void Thermo::getComAll(Vector3d &com, Vector3d &comVel){ |
651 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
652 |
|
653 |
if (!(snap->hasCOM && snap->hasCOMvel)) { |
654 |
|
655 |
SimInfo::MoleculeIterator i; |
656 |
Molecule* mol; |
657 |
|
658 |
RealType totalMass(0.0); |
659 |
|
660 |
com = 0.0; |
661 |
comVel = 0.0; |
662 |
|
663 |
for (mol = info_->beginMolecule(i); mol != NULL; |
664 |
mol = info_->nextMolecule(i)) { |
665 |
RealType mass = mol->getMass(); |
666 |
totalMass += mass; |
667 |
com += mass * mol->getCom(); |
668 |
comVel += mass * mol->getComVel(); |
669 |
} |
670 |
|
671 |
#ifdef IS_MPI |
672 |
MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE, |
673 |
MPI_SUM, MPI_COMM_WORLD); |
674 |
MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3, |
675 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
676 |
MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3, |
677 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
678 |
#endif |
679 |
|
680 |
com /= totalMass; |
681 |
comVel /= totalMass; |
682 |
snap->setCOM(com); |
683 |
snap->setCOMvel(comVel); |
684 |
} |
685 |
com = snap->getCOM(); |
686 |
comVel = snap->getCOMvel(); |
687 |
return; |
688 |
} |
689 |
|
690 |
/** |
691 |
* \brief Return inertia tensor for entire system and angular momentum |
692 |
* Vector. |
693 |
* |
694 |
* |
695 |
* |
696 |
* [ Ixx -Ixy -Ixz ] |
697 |
* I =| -Iyx Iyy -Iyz | |
698 |
* [ -Izx -Iyz Izz ] |
699 |
*/ |
700 |
void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor, |
701 |
Vector3d &angularMomentum){ |
702 |
|
703 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
704 |
|
705 |
if (!(snap->hasInertiaTensor && snap->hasCOMw)) { |
706 |
|
707 |
RealType xx = 0.0; |
708 |
RealType yy = 0.0; |
709 |
RealType zz = 0.0; |
710 |
RealType xy = 0.0; |
711 |
RealType xz = 0.0; |
712 |
RealType yz = 0.0; |
713 |
Vector3d com(0.0); |
714 |
Vector3d comVel(0.0); |
715 |
|
716 |
getComAll(com, comVel); |
717 |
|
718 |
SimInfo::MoleculeIterator i; |
719 |
Molecule* mol; |
720 |
|
721 |
Vector3d thisq(0.0); |
722 |
Vector3d thisv(0.0); |
723 |
|
724 |
RealType thisMass = 0.0; |
725 |
|
726 |
for (mol = info_->beginMolecule(i); mol != NULL; |
727 |
mol = info_->nextMolecule(i)) { |
728 |
|
729 |
thisq = mol->getCom()-com; |
730 |
thisv = mol->getComVel()-comVel; |
731 |
thisMass = mol->getMass(); |
732 |
// Compute moment of intertia coefficients. |
733 |
xx += thisq[0]*thisq[0]*thisMass; |
734 |
yy += thisq[1]*thisq[1]*thisMass; |
735 |
zz += thisq[2]*thisq[2]*thisMass; |
736 |
|
737 |
// compute products of intertia |
738 |
xy += thisq[0]*thisq[1]*thisMass; |
739 |
xz += thisq[0]*thisq[2]*thisMass; |
740 |
yz += thisq[1]*thisq[2]*thisMass; |
741 |
|
742 |
angularMomentum += cross( thisq, thisv ) * thisMass; |
743 |
} |
744 |
|
745 |
inertiaTensor(0,0) = yy + zz; |
746 |
inertiaTensor(0,1) = -xy; |
747 |
inertiaTensor(0,2) = -xz; |
748 |
inertiaTensor(1,0) = -xy; |
749 |
inertiaTensor(1,1) = xx + zz; |
750 |
inertiaTensor(1,2) = -yz; |
751 |
inertiaTensor(2,0) = -xz; |
752 |
inertiaTensor(2,1) = -yz; |
753 |
inertiaTensor(2,2) = xx + yy; |
754 |
|
755 |
#ifdef IS_MPI |
756 |
MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(), |
757 |
9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
758 |
MPI_Allreduce(MPI_IN_PLACE, |
759 |
angularMomentum.getArrayPointer(), 3, |
760 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
761 |
#endif |
762 |
|
763 |
snap->setCOMw(angularMomentum); |
764 |
snap->setInertiaTensor(inertiaTensor); |
765 |
} |
766 |
|
767 |
angularMomentum = snap->getCOMw(); |
768 |
inertiaTensor = snap->getInertiaTensor(); |
769 |
|
770 |
return; |
771 |
} |
772 |
|
773 |
|
774 |
Mat3x3d Thermo::getBoundingBox(){ |
775 |
|
776 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
777 |
|
778 |
if (!(snap->hasBoundingBox)) { |
779 |
|
780 |
SimInfo::MoleculeIterator i; |
781 |
Molecule::RigidBodyIterator ri; |
782 |
Molecule::AtomIterator ai; |
783 |
Molecule* mol; |
784 |
RigidBody* rb; |
785 |
Atom* atom; |
786 |
Vector3d pos, bMax, bMin; |
787 |
int index = 0; |
788 |
|
789 |
for (mol = info_->beginMolecule(i); mol != NULL; |
790 |
mol = info_->nextMolecule(i)) { |
791 |
|
792 |
//change the positions of atoms which belong to the rigidbodies |
793 |
for (rb = mol->beginRigidBody(ri); rb != NULL; |
794 |
rb = mol->nextRigidBody(ri)) { |
795 |
rb->updateAtoms(); |
796 |
} |
797 |
|
798 |
for(atom = mol->beginAtom(ai); atom != NULL; |
799 |
atom = mol->nextAtom(ai)) { |
800 |
|
801 |
pos = atom->getPos(); |
802 |
|
803 |
if (index == 0) { |
804 |
bMax = pos; |
805 |
bMin = pos; |
806 |
} else { |
807 |
for (int i = 0; i < 3; i++) { |
808 |
bMax[i] = max(bMax[i], pos[i]); |
809 |
bMin[i] = min(bMin[i], pos[i]); |
810 |
} |
811 |
} |
812 |
index++; |
813 |
} |
814 |
} |
815 |
|
816 |
#ifdef IS_MPI |
817 |
MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE, |
818 |
MPI_MAX, MPI_COMM_WORLD); |
819 |
|
820 |
MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE, |
821 |
MPI_MIN, MPI_COMM_WORLD); |
822 |
#endif |
823 |
Mat3x3d bBox = Mat3x3d(0.0); |
824 |
for (int i = 0; i < 3; i++) { |
825 |
bBox(i,i) = bMax[i] - bMin[i]; |
826 |
} |
827 |
snap->setBoundingBox(bBox); |
828 |
} |
829 |
|
830 |
return snap->getBoundingBox(); |
831 |
} |
832 |
|
833 |
|
834 |
// Returns the angular momentum of the system |
835 |
Vector3d Thermo::getAngularMomentum(){ |
836 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
837 |
|
838 |
if (!snap->hasCOMw) { |
839 |
|
840 |
Vector3d com(0.0); |
841 |
Vector3d comVel(0.0); |
842 |
Vector3d angularMomentum(0.0); |
843 |
|
844 |
getComAll(com, comVel); |
845 |
|
846 |
SimInfo::MoleculeIterator i; |
847 |
Molecule* mol; |
848 |
|
849 |
Vector3d thisr(0.0); |
850 |
Vector3d thisp(0.0); |
851 |
|
852 |
RealType thisMass; |
853 |
|
854 |
for (mol = info_->beginMolecule(i); mol != NULL; |
855 |
mol = info_->nextMolecule(i)) { |
856 |
thisMass = mol->getMass(); |
857 |
thisr = mol->getCom() - com; |
858 |
thisp = (mol->getComVel() - comVel) * thisMass; |
859 |
|
860 |
angularMomentum += cross( thisr, thisp ); |
861 |
} |
862 |
|
863 |
#ifdef IS_MPI |
864 |
MPI_Allreduce(MPI_IN_PLACE, |
865 |
angularMomentum.getArrayPointer(), 3, |
866 |
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
867 |
#endif |
868 |
|
869 |
snap->setCOMw(angularMomentum); |
870 |
} |
871 |
|
872 |
return snap->getCOMw(); |
873 |
} |
874 |
|
875 |
|
876 |
/** |
877 |
* Returns the Volume of the system based on a ellipsoid with |
878 |
* semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3 |
879 |
* where R_i are related to the principle inertia moments |
880 |
* R_i = sqrt(C*I_i/N), this reduces to |
881 |
* V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)). |
882 |
* See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536. |
883 |
*/ |
884 |
RealType Thermo::getGyrationalVolume(){ |
885 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
886 |
|
887 |
if (!snap->hasGyrationalVolume) { |
888 |
|
889 |
Mat3x3d intTensor; |
890 |
RealType det; |
891 |
Vector3d dummyAngMom; |
892 |
RealType sysconstants; |
893 |
RealType geomCnst; |
894 |
RealType volume; |
895 |
|
896 |
geomCnst = 3.0/2.0; |
897 |
/* Get the inertial tensor and angular momentum for free*/ |
898 |
getInertiaTensor(intTensor, dummyAngMom); |
899 |
|
900 |
det = intTensor.determinant(); |
901 |
sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects()); |
902 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det); |
903 |
|
904 |
snap->setGyrationalVolume(volume); |
905 |
} |
906 |
return snap->getGyrationalVolume(); |
907 |
} |
908 |
|
909 |
void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){ |
910 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
911 |
|
912 |
if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) { |
913 |
|
914 |
Mat3x3d intTensor; |
915 |
Vector3d dummyAngMom; |
916 |
RealType sysconstants; |
917 |
RealType geomCnst; |
918 |
|
919 |
geomCnst = 3.0/2.0; |
920 |
/* Get the inertia tensor and angular momentum for free*/ |
921 |
this->getInertiaTensor(intTensor, dummyAngMom); |
922 |
|
923 |
detI = intTensor.determinant(); |
924 |
sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects()); |
925 |
volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI); |
926 |
snap->setGyrationalVolume(volume); |
927 |
} else { |
928 |
volume = snap->getGyrationalVolume(); |
929 |
detI = snap->getInertiaTensor().determinant(); |
930 |
} |
931 |
return; |
932 |
} |
933 |
|
934 |
RealType Thermo::getTaggedAtomPairDistance(){ |
935 |
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
936 |
Globals* simParams = info_->getSimParams(); |
937 |
|
938 |
if (simParams->haveTaggedAtomPair() && |
939 |
simParams->havePrintTaggedPairDistance()) { |
940 |
if ( simParams->getPrintTaggedPairDistance()) { |
941 |
|
942 |
pair<int, int> tap = simParams->getTaggedAtomPair(); |
943 |
Vector3d pos1, pos2, rab; |
944 |
|
945 |
#ifdef IS_MPI |
946 |
int mol1 = info_->getGlobalMolMembership(tap.first); |
947 |
int mol2 = info_->getGlobalMolMembership(tap.second); |
948 |
|
949 |
int proc1 = info_->getMolToProc(mol1); |
950 |
int proc2 = info_->getMolToProc(mol2); |
951 |
|
952 |
RealType data[3]; |
953 |
if (proc1 == worldRank) { |
954 |
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
955 |
pos1 = sd1->getPos(); |
956 |
data[0] = pos1.x(); |
957 |
data[1] = pos1.y(); |
958 |
data[2] = pos1.z(); |
959 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
960 |
} else { |
961 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
962 |
pos1 = Vector3d(data); |
963 |
} |
964 |
|
965 |
if (proc2 == worldRank) { |
966 |
StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second); |
967 |
pos2 = sd2->getPos(); |
968 |
data[0] = pos2.x(); |
969 |
data[1] = pos2.y(); |
970 |
data[2] = pos2.z(); |
971 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
972 |
} else { |
973 |
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
974 |
pos2 = Vector3d(data); |
975 |
} |
976 |
#else |
977 |
StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first); |
978 |
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
979 |
pos1 = at1->getPos(); |
980 |
pos2 = at2->getPos(); |
981 |
#endif |
982 |
rab = pos2 - pos1; |
983 |
currSnapshot->wrapVector(rab); |
984 |
return rab.length(); |
985 |
} |
986 |
return 0.0; |
987 |
} |
988 |
return 0.0; |
989 |
} |
990 |
|
991 |
RealType Thermo::getHullVolume(){ |
992 |
#ifdef HAVE_QHULL |
993 |
Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot(); |
994 |
if (!snap->hasHullVolume) { |
995 |
Hull* surfaceMesh_; |
996 |
|
997 |
Globals* simParams = info_->getSimParams(); |
998 |
const std::string ht = simParams->getHULL_Method(); |
999 |
|
1000 |
if (ht == "Convex") { |
1001 |
surfaceMesh_ = new ConvexHull(); |
1002 |
} else if (ht == "AlphaShape") { |
1003 |
surfaceMesh_ = new AlphaHull(simParams->getAlpha()); |
1004 |
} else { |
1005 |
return 0.0; |
1006 |
} |
1007 |
|
1008 |
// Build a vector of stunt doubles to determine if they are |
1009 |
// surface atoms |
1010 |
std::vector<StuntDouble*> localSites_; |
1011 |
Molecule* mol; |
1012 |
StuntDouble* sd; |
1013 |
SimInfo::MoleculeIterator i; |
1014 |
Molecule::IntegrableObjectIterator j; |
1015 |
|
1016 |
for (mol = info_->beginMolecule(i); mol != NULL; |
1017 |
mol = info_->nextMolecule(i)) { |
1018 |
for (sd = mol->beginIntegrableObject(j); |
1019 |
sd != NULL; |
1020 |
sd = mol->nextIntegrableObject(j)) { |
1021 |
localSites_.push_back(sd); |
1022 |
} |
1023 |
} |
1024 |
|
1025 |
// Compute surface Mesh |
1026 |
surfaceMesh_->computeHull(localSites_); |
1027 |
snap->setHullVolume(surfaceMesh_->getVolume()); |
1028 |
|
1029 |
delete surfaceMesh_; |
1030 |
} |
1031 |
|
1032 |
return snap->getHullVolume(); |
1033 |
#else |
1034 |
return 0.0; |
1035 |
#endif |
1036 |
} |
1037 |
|
1038 |
|
1039 |
} |