ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2022 by gezelter, Fri Sep 26 22:22:28 2014 UTC

# Line 1 | Line 1
1 < #include <math.h>
2 < #include <iostream>
3 < using namespace std;
1 > /*
2 > * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 > *
4 > * The University of Notre Dame grants you ("Licensee") a
5 > * non-exclusive, royalty free, license to use, modify and
6 > * redistribute this software in source and binary code form, provided
7 > * that the following conditions are met:
8 > *
9 > * 1. Redistributions of source code must retain the above copyright
10 > *    notice, this list of conditions and the following disclaimer.
11 > *
12 > * 2. Redistributions in binary form must reproduce the above copyright
13 > *    notice, this list of conditions and the following disclaimer in the
14 > *    documentation and/or other materials provided with the
15 > *    distribution.
16 > *
17 > * This software is provided "AS IS," without a warranty of any
18 > * kind. All express or implied conditions, representations and
19 > * warranties, including any implied warranty of merchantability,
20 > * fitness for a particular purpose or non-infringement, are hereby
21 > * excluded.  The University of Notre Dame and its licensors shall not
22 > * be liable for any damages suffered by licensee as a result of
23 > * using, modifying or distributing the software or its
24 > * derivatives. In no event will the University of Notre Dame or its
25 > * licensors be liable for any lost revenue, profit or data, or for
26 > * direct, indirect, special, consequential, incidental or punitive
27 > * damages, however caused and regardless of the theory of liability,
28 > * arising out of the use of or inability to use software, even if the
29 > * University of Notre Dame has been advised of the possibility of
30 > * such damages.
31 > *
32 > * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 > * research, please cite the appropriate papers when you publish your
34 > * work.  Good starting points are:
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 > */
42  
43   #ifdef IS_MPI
44   #include <mpi.h>
45   #endif //is_mpi
46 +
47 + #include <math.h>
48 + #include <iostream>
49  
50 < #include "Thermo.hpp"
51 < #include "SRI.hpp"
52 < #include "Integrator.hpp"
53 < #include "simError.h"
54 < #include "MatVec3.h"
50 > #include "brains/Thermo.hpp"
51 > #include "primitives/Molecule.hpp"
52 > #include "utils/simError.h"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/FixedChargeAdapter.hpp"
55 > #include "types/FluctuatingChargeAdapter.hpp"
56 > #include "types/MultipoleAdapter.hpp"
57 > #ifdef HAVE_QHULL
58 > #include "math/ConvexHull.hpp"
59 > #include "math/AlphaHull.hpp"
60 > #endif
61  
62 < #ifdef IS_MPI
63 < #define __C
17 < #include "mpiSimulation.hpp"
18 < #endif // is_mpi
62 > using namespace std;
63 > namespace OpenMD {
64  
65 < inline double roundMe( double x ){
66 <          return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 );
22 < }
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67  
68 < Thermo::Thermo( SimInfo* the_info ) {
69 <  info = the_info;
70 <  int baseSeed = the_info->getSeed();
71 <  
72 <  gaussStream = new gaussianSPRNG( baseSeed );
73 < }
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79 >        
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
93 >                    MPI_SUM, MPI_COMM_WORLD);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100 >    }
101 >    return snap->getTranslationalKineticEnergy();
102 >  }
103  
104 < Thermo::~Thermo(){
105 <  delete gaussStream;
33 < }
104 >  RealType Thermo::getRotationalKinetic() {
105 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106  
107 < double Thermo::getKinetic(){
107 >    if (!snap->hasRotationalKineticEnergy) {
108 >      SimInfo::MoleculeIterator miter;
109 >      vector<StuntDouble*>::iterator iiter;
110 >      Molecule* mol;
111 >      StuntDouble* sd;    
112 >      Vector3d angMom;
113 >      Mat3x3d I;
114 >      int i, j, k;
115 >      RealType kinetic(0.0);
116 >      
117 >      for (mol = info_->beginMolecule(miter); mol != NULL;
118 >           mol = info_->nextMolecule(miter)) {
119 >        
120 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 >             sd = mol->nextIntegrableObject(iiter)) {
122 >          
123 >          if (sd->isDirectional()) {
124 >            angMom = sd->getJ();
125 >            I = sd->getI();
126 >            
127 >            if (sd->isLinear()) {
128 >              i = sd->linearAxis();
129 >              j = (i + 1) % 3;
130 >              k = (i + 2) % 3;
131 >              kinetic += angMom[j] * angMom[j] / I(j, j)
132 >                + angMom[k] * angMom[k] / I(k, k);
133 >            } else {                        
134 >              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 >                + angMom[1]*angMom[1]/I(1, 1)
136 >                + angMom[2]*angMom[2]/I(2, 2);
137 >            }
138 >          }          
139 >        }
140 >      }
141 >      
142 > #ifdef IS_MPI
143 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
144 >                    MPI_SUM, MPI_COMM_WORLD);
145 > #endif
146 >      
147 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 >          
149 >      snap->setRotationalKineticEnergy(kinetic);
150 >    }
151 >    return snap->getRotationalKineticEnergy();
152 >  }
153  
154 <  const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2
38 <  double kinetic;
39 <  double amass;
40 <  double aVel[3], aJ[3], I[3][3];
41 <  int i, j, k, kl;
154 >      
155  
156 <  double kinetic_global;
157 <  vector<StuntDouble *> integrableObjects = info->integrableObjects;
45 <  
46 <  kinetic = 0.0;
47 <  kinetic_global = 0.0;
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 <  for (kl=0; kl<integrableObjects.size(); kl++) {
160 <    integrableObjects[kl]->getVel(aVel);
161 <    amass = integrableObjects[kl]->getMass();
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164 >  }
165  
166 <   for(j=0; j<3; j++)
54 <      kinetic += amass*aVel[j]*aVel[j];
166 >  RealType Thermo::getPotential() {
167  
168 <   if (integrableObjects[kl]->isDirectional()){
169 <
58 <      integrableObjects[kl]->getJ( aJ );
59 <      integrableObjects[kl]->getI( I );
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 <      if (integrableObjects[kl]->isLinear()) {
172 <        i = integrableObjects[kl]->linearAxis();
63 <        j = (i+1)%3;
64 <        k = (i+2)%3;
65 <        kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k];
66 <      } else {
67 <        for (j=0; j<3; j++)
68 <          kinetic += aJ[j]*aJ[j] / I[j][j];
69 <      }
70 <   }
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173    }
72 #ifdef IS_MPI
73  MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE,
74                MPI_SUM, MPI_COMM_WORLD);
75  kinetic = kinetic_global;
76 #endif //is_mpi
77  
78  kinetic = kinetic * 0.5 / e_convert;
174  
175 <  return kinetic;
81 < }
175 >  RealType Thermo::getTotalEnergy() {
176  
177 < double Thermo::getPotential(){
84 <  
85 <  double potential_local;
86 <  double potential;
87 <  int el, nSRI;
88 <  Molecule* molecules;
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <  molecules = info->molecules;
180 <  nSRI = info->n_SRI;
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 <  potential_local = 0.0;
94 <  potential = 0.0;
95 <  potential_local += info->lrPot;
96 <
97 <  for( el=0; el<info->n_mol; el++ ){    
98 <    potential_local += molecules[el].getPotential();
183 >    return snap->getTotalEnergy();
184    }
185  
186 <  // Get total potential for entire system from MPI.
102 < #ifdef IS_MPI
103 <  MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE,
104 <                MPI_SUM, MPI_COMM_WORLD);
105 < #else
106 <  potential = potential_local;
107 < #endif // is_mpi
186 >  RealType Thermo::getTemperature() {
187  
188 <  return potential;
110 < }
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 < double Thermo::getTotalE(){
190 >    if (!snap->hasTemperature) {
191  
192 <  double total;
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 <  total = this->getKinetic() + this->getPotential();
196 <  return total;
197 < }
195 >      snap->setTemperature(temperature);
196 >    }
197 >    
198 >    return snap->getTemperature();
199 >  }
200  
201 < double Thermo::getTemperature(){
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <  const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K)
205 <  double temperature;
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
231 >                    MPI_SUM, MPI_COMM_WORLD);
232 > #endif
233  
234 <  temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb );
235 <  return temperature;
236 < }
234 >      kinetic *= 0.5;
235 >      eTemp =  (2.0 * kinetic) /
236 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );            
237 >    
238 >      snap->setElectronicTemperature(eTemp);
239 >    }
240  
241 < double Thermo::getVolume() {
241 >    return snap->getElectronicTemperature();
242 >  }
243  
131  return info->boxVol;
132 }
244  
245 < double Thermo::getPressure() {
245 >  RealType Thermo::getVolume() {
246 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 >    return snap->getVolume();
248 >  }
249  
250 <  // Relies on the calculation of the full molecular pressure tensor
251 <  
138 <  const double p_convert = 1.63882576e8;
139 <  double press[3][3];
140 <  double pressure;
250 >  RealType Thermo::getPressure() {
251 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252  
253 <  this->getPressureTensor(press);
253 >    if (!snap->hasPressure) {
254 >      // Relies on the calculation of the full molecular pressure tensor
255 >      
256 >      Mat3x3d tensor;
257 >      RealType pressure;
258 >      
259 >      tensor = getPressureTensor();
260 >      
261 >      pressure = PhysicalConstants::pressureConvert *
262 >        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 >      
264 >      snap->setPressure(pressure);
265 >    }
266 >    
267 >    return snap->getPressure();    
268 >  }
269  
270 <  pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0;
270 >  Mat3x3d Thermo::getPressureTensor() {
271 >    // returns pressure tensor in units amu*fs^-2*Ang^-1
272 >    // routine derived via viral theorem description in:
273 >    // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <  return pressure;
147 < }
276 >    if (!snap->hasPressureTensor) {
277  
278 < double Thermo::getPressureX() {
279 <
280 <  // Relies on the calculation of the full molecular pressure tensor
281 <  
282 <  const double p_convert = 1.63882576e8;
283 <  double press[3][3];
284 <  double pressureX;
285 <
286 <  this->getPressureTensor(press);
287 <
288 <  pressureX = p_convert * press[0][0];
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297 >      }
298 >      
299 > #ifdef IS_MPI
300 >      MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9,
301 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
302 > #endif
303 >      
304 >      RealType volume = this->getVolume();
305 >      Mat3x3d stressTensor = snap->getStressTensor();
306 >      
307 >      pressureTensor =  (p_tens +
308 >                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 >      
310 >      snap->setPressureTensor(pressureTensor);
311 >    }
312 >    return snap->getPressureTensor();
313 >  }
314  
161  return pressureX;
162 }
315  
164 double Thermo::getPressureY() {
316  
166  // Relies on the calculation of the full molecular pressure tensor
167  
168  const double p_convert = 1.63882576e8;
169  double press[3][3];
170  double pressureY;
317  
318 <  this->getPressureTensor(press);
318 >  Vector3d Thermo::getSystemDipole() {
319 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320  
321 <  pressureY = p_convert * press[1][1];
321 >    if (!snap->hasSystemDipole) {
322 >      SimInfo::MoleculeIterator miter;
323 >      vector<Atom*>::iterator aiter;
324 >      Molecule* mol;
325 >      Atom* atom;
326 >      RealType charge;
327 >      Vector3d ri(0.0);
328 >      Vector3d dipoleVector(0.0);
329 >      Vector3d nPos(0.0);
330 >      Vector3d pPos(0.0);
331 >      RealType nChg(0.0);
332 >      RealType pChg(0.0);
333 >      int nCount = 0;
334 >      int pCount = 0;
335 >      
336 >      RealType chargeToC = 1.60217733e-19;
337 >      RealType angstromToM = 1.0e-10;
338 >      RealType debyeToCm = 3.33564095198e-30;
339 >      
340 >      for (mol = info_->beginMolecule(miter); mol != NULL;
341 >           mol = info_->nextMolecule(miter)) {
342 >        
343 >        for (atom = mol->beginAtom(aiter); atom != NULL;
344 >             atom = mol->nextAtom(aiter)) {
345 >          
346 >          charge = 0.0;
347 >          
348 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349 >          if ( fca.isFixedCharge() ) {
350 >            charge = fca.getCharge();
351 >          }
352 >          
353 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354 >          if ( fqa.isFluctuatingCharge() ) {
355 >            charge += atom->getFlucQPos();
356 >          }
357 >          
358 >          charge *= chargeToC;
359 >          
360 >          ri = atom->getPos();
361 >          snap->wrapVector(ri);
362 >          ri *= angstromToM;
363 >          
364 >          if (charge < 0.0) {
365 >            nPos += ri;
366 >            nChg -= charge;
367 >            nCount++;
368 >          } else if (charge > 0.0) {
369 >            pPos += ri;
370 >            pChg += charge;
371 >            pCount++;
372 >          }
373 >          
374 >          if (atom->isDipole()) {
375 >            dipoleVector += atom->getDipole() * debyeToCm;
376 >          }
377 >        }
378 >      }
379 >      
380 >      
381 > #ifdef IS_MPI
382 >      MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE,
383 >                    MPI_SUM, MPI_COMM_WORLD);
384 >      MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE,
385 >                    MPI_SUM, MPI_COMM_WORLD);
386 >      
387 >      MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER,
388 >                    MPI_SUM, MPI_COMM_WORLD);
389 >      MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER,
390 >                    MPI_SUM, MPI_COMM_WORLD);
391 >      
392 >      MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3,
393 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
394 >      MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3,
395 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
396  
397 <  return pressureY;
398 < }
397 >      MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(),
398 >                    3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399 > #endif
400 >      
401 >      // first load the accumulated dipole moment (if dipoles were present)
402 >      Vector3d boxDipole = dipoleVector;
403 >      // now include the dipole moment due to charges
404 >      // use the lesser of the positive and negative charge totals
405 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
406 >      
407 >      // find the average positions
408 >      if (pCount > 0 && nCount > 0 ) {
409 >        pPos /= pCount;
410 >        nPos /= nCount;
411 >      }
412 >      
413 >      // dipole is from the negative to the positive (physics notation)
414 >      boxDipole += (pPos - nPos) * chg_value;
415 >      snap->setSystemDipole(boxDipole);
416 >    }
417  
418 < double Thermo::getPressureZ() {
418 >    return snap->getSystemDipole();
419 >  }
420  
181  // Relies on the calculation of the full molecular pressure tensor
182  
183  const double p_convert = 1.63882576e8;
184  double press[3][3];
185  double pressureZ;
421  
422 <  this->getPressureTensor(press);
422 >  Mat3x3d Thermo::getSystemQuadrupole() {
423 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
424  
425 <  pressureZ = p_convert * press[2][2];
425 >    if (!snap->hasSystemQuadrupole) {
426 >      SimInfo::MoleculeIterator miter;
427 >      vector<Atom*>::iterator aiter;
428 >      Molecule* mol;
429 >      Atom* atom;
430 >      RealType charge;
431 >      Vector3d ri(0.0);
432 >      Vector3d dipole(0.0);
433 >      Mat3x3d qpole(0.0);
434 >      
435 >      RealType chargeToC = 1.60217733e-19;
436 >      RealType angstromToM = 1.0e-10;
437 >      RealType debyeToCm = 3.33564095198e-30;
438 >      
439 >      for (mol = info_->beginMolecule(miter); mol != NULL;
440 >           mol = info_->nextMolecule(miter)) {
441 >        
442 >        for (atom = mol->beginAtom(aiter); atom != NULL;
443 >             atom = mol->nextAtom(aiter)) {
444  
445 <  return pressureZ;
446 < }
445 >          ri = atom->getPos();
446 >          snap->wrapVector(ri);
447 >          ri *= angstromToM;
448 >          
449 >          charge = 0.0;
450 >          
451 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
452 >          if ( fca.isFixedCharge() ) {
453 >            charge = fca.getCharge();
454 >          }
455 >          
456 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
457 >          if ( fqa.isFluctuatingCharge() ) {
458 >            charge += atom->getFlucQPos();
459 >          }
460 >          
461 >          charge *= chargeToC;
462 >          
463 >          qpole += 0.5 * charge * outProduct(ri, ri);
464  
465 +          MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
466 +          
467 +          if ( ma.isDipole() ) {
468 +            dipole = atom->getDipole() * debyeToCm;
469 +            qpole += 0.5 * outProduct( dipole, ri );
470 +          }
471  
472 < void Thermo::getPressureTensor(double press[3][3]){
473 <  // returns pressure tensor in units amu*fs^-2*Ang^-1
474 <  // routine derived via viral theorem description in:
475 <  // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
472 >          if ( ma.isQuadrupole() ) {
473 >            qpole += atom->getQuadrupole() * debyeToCm * angstromToM;          
474 >          }
475 >        }
476 >      }
477 >        
478 > #ifdef IS_MPI
479 >      MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(),
480 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
481 > #endif
482 >      
483 >      snap->setSystemQuadrupole(qpole);
484 >    }
485 >    
486 >    return snap->getSystemQuadrupole();
487 >  }
488  
489 <  const double e_convert = 4.184e-4;
489 >  // Returns the Heat Flux Vector for the system
490 >  Vector3d Thermo::getHeatFlux(){
491 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
492 >    SimInfo::MoleculeIterator miter;
493 >    vector<StuntDouble*>::iterator iiter;
494 >    Molecule* mol;
495 >    StuntDouble* sd;    
496 >    RigidBody::AtomIterator ai;
497 >    Atom* atom;      
498 >    Vector3d vel;
499 >    Vector3d angMom;
500 >    Mat3x3d I;
501 >    int i;
502 >    int j;
503 >    int k;
504 >    RealType mass;
505  
506 <  double molmass, volume;
507 <  double vcom[3];
508 <  double p_local[9], p_global[9];
509 <  int i, j, k;
506 >    Vector3d x_a;
507 >    RealType kinetic;
508 >    RealType potential;
509 >    RealType eatom;
510 >    // Convective portion of the heat flux
511 >    Vector3d heatFluxJc = V3Zero;
512  
513 <  for (i=0; i < 9; i++) {    
514 <    p_local[i] = 0.0;
515 <    p_global[i] = 0.0;
516 <  }
513 >    /* Calculate convective portion of the heat flux */
514 >    for (mol = info_->beginMolecule(miter); mol != NULL;
515 >         mol = info_->nextMolecule(miter)) {
516 >      
517 >      for (sd = mol->beginIntegrableObject(iiter);
518 >           sd != NULL;
519 >           sd = mol->nextIntegrableObject(iiter)) {
520 >        
521 >        mass = sd->getMass();
522 >        vel = sd->getVel();
523  
524 <  // use velocities of integrableObjects and their masses:  
524 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
525 >        
526 >        if (sd->isDirectional()) {
527 >          angMom = sd->getJ();
528 >          I = sd->getI();
529  
530 <  for (i=0; i < info->integrableObjects.size(); i++) {
530 >          if (sd->isLinear()) {
531 >            i = sd->linearAxis();
532 >            j = (i + 1) % 3;
533 >            k = (i + 2) % 3;
534 >            kinetic += angMom[j] * angMom[j] / I(j, j)
535 >              + angMom[k] * angMom[k] / I(k, k);
536 >          } else {                        
537 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
538 >              + angMom[1]*angMom[1]/I(1, 1)
539 >              + angMom[2]*angMom[2]/I(2, 2);
540 >          }
541 >        }
542  
543 <    molmass = info->integrableObjects[i]->getMass();
543 >        potential = 0.0;
544 >
545 >        if (sd->isRigidBody()) {
546 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
547 >          for (atom = rb->beginAtom(ai); atom != NULL;
548 >               atom = rb->nextAtom(ai)) {
549 >            potential +=  atom->getParticlePot();
550 >          }          
551 >        } else {
552 >          potential = sd->getParticlePot();
553 >        }
554 >
555 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
556 >        // The potential may not be a 1/2 factor
557 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
558 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
559 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
560 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
561 >      }
562 >    }
563 >
564 >    /* The J_v vector is reduced in the forceManager so everyone has
565 >     *  the global Jv. Jc is computed over the local atoms and must be
566 >     *  reduced among all processors.
567 >     */
568 > #ifdef IS_MPI
569 >    MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE,
570 >                  MPI_SUM, MPI_COMM_WORLD);
571 > #endif
572      
573 <    info->integrableObjects[i]->getVel(vcom);
574 <    
575 <    p_local[0] += molmass * (vcom[0] * vcom[0]);
576 <    p_local[1] += molmass * (vcom[0] * vcom[1]);
577 <    p_local[2] += molmass * (vcom[0] * vcom[2]);
578 <    p_local[3] += molmass * (vcom[1] * vcom[0]);
579 <    p_local[4] += molmass * (vcom[1] * vcom[1]);
580 <    p_local[5] += molmass * (vcom[1] * vcom[2]);
226 <    p_local[6] += molmass * (vcom[2] * vcom[0]);
227 <    p_local[7] += molmass * (vcom[2] * vcom[1]);
228 <    p_local[8] += molmass * (vcom[2] * vcom[2]);
573 >    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
574 >
575 >    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
576 >      PhysicalConstants::energyConvert;
577 >        
578 >    // Correct for the fact the flux is 1/V (Jc + Jv)
579 >    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
580 >  }
581  
230  }
582  
583 <  // Get total for entire system from MPI.
584 <  
234 < #ifdef IS_MPI
235 <  MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
236 < #else
237 <  for (i=0; i<9; i++) {
238 <    p_global[i] = p_local[i];
239 <  }
240 < #endif // is_mpi
583 >  Vector3d Thermo::getComVel(){
584 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
585  
586 <  volume = this->getVolume();
586 >    if (!snap->hasCOMvel) {
587  
588 <
589 <
590 <  for(i = 0; i < 3; i++) {
591 <    for (j = 0; j < 3; j++) {
592 <      k = 3*i + j;
593 <      press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume;
588 >      SimInfo::MoleculeIterator i;
589 >      Molecule* mol;
590 >      
591 >      Vector3d comVel(0.0);
592 >      RealType totalMass(0.0);
593 >      
594 >      for (mol = info_->beginMolecule(i); mol != NULL;
595 >           mol = info_->nextMolecule(i)) {
596 >        RealType mass = mol->getMass();
597 >        totalMass += mass;
598 >        comVel += mass * mol->getComVel();
599 >      }  
600 >      
601 > #ifdef IS_MPI
602 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
603 >                    MPI_SUM, MPI_COMM_WORLD);
604 >      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
605 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
606 > #endif
607 >      
608 >      comVel /= totalMass;
609 >      snap->setCOMvel(comVel);
610      }
611 +    return snap->getCOMvel();
612    }
252 }
613  
614 < void Thermo::velocitize() {
615 <  
256 <  double aVel[3], aJ[3], I[3][3];
257 <  int i, j, l, m, n, vr, vd; // velocity randomizer loop counters
258 <  double vdrift[3];
259 <  double vbar;
260 <  const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc.
261 <  double av2;
262 <  double kebar;
263 <  double temperature;
264 <  int nobj;
614 >  Vector3d Thermo::getCom(){
615 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
616  
617 <  if (!info->have_target_temp) {
618 <    sprintf( painCave.errMsg,
619 <             "You can't resample the velocities without a targetTemp!\n"
620 <             );
621 <    painCave.isFatal = 1;
622 <    painCave.severity = OOPSE_ERROR;
623 <    simError();
624 <    return;
625 <  }
617 >    if (!snap->hasCOM) {
618 >      
619 >      SimInfo::MoleculeIterator i;
620 >      Molecule* mol;
621 >      
622 >      Vector3d com(0.0);
623 >      RealType totalMass(0.0);
624 >      
625 >      for (mol = info_->beginMolecule(i); mol != NULL;
626 >           mol = info_->nextMolecule(i)) {
627 >        RealType mass = mol->getMass();
628 >        totalMass += mass;
629 >        com += mass * mol->getCom();
630 >      }  
631 >      
632 > #ifdef IS_MPI
633 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
634 >                    MPI_SUM, MPI_COMM_WORLD);
635 >      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
636 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
637 > #endif
638 >      
639 >      com /= totalMass;
640 >      snap->setCOM(com);
641 >    }
642 >    return snap->getCOM();
643 >  }        
644  
645 <  nobj = info->integrableObjects.size();
646 <  
647 <  temperature   = info->target_temp;
648 <  
649 <  kebar = kb * temperature * (double)info->ndfRaw /
650 <    ( 2.0 * (double)info->ndf );
282 <  
283 <  for(vr = 0; vr < nobj; vr++){
284 <    
285 <    // uses equipartition theory to solve for vbar in angstrom/fs
645 >  /**
646 >   * Returns center of mass and center of mass velocity in one
647 >   * function call.
648 >   */  
649 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
650 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
651  
652 <    av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass();
288 <    vbar = sqrt( av2 );
652 >    if (!(snap->hasCOM && snap->hasCOMvel)) {
653  
654 <    // picks random velocities from a gaussian distribution
655 <    // centered on vbar
654 >      SimInfo::MoleculeIterator i;
655 >      Molecule* mol;
656 >      
657 >      RealType totalMass(0.0);
658 >      
659 >      com = 0.0;
660 >      comVel = 0.0;
661 >      
662 >      for (mol = info_->beginMolecule(i); mol != NULL;
663 >           mol = info_->nextMolecule(i)) {
664 >        RealType mass = mol->getMass();
665 >        totalMass += mass;
666 >        com += mass * mol->getCom();
667 >        comVel += mass * mol->getComVel();          
668 >      }  
669 >      
670 > #ifdef IS_MPI
671 >      MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
672 >                    MPI_SUM, MPI_COMM_WORLD);
673 >      MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
674 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
675 >      MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
676 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
677 > #endif
678 >      
679 >      com /= totalMass;
680 >      comVel /= totalMass;
681 >      snap->setCOM(com);
682 >      snap->setCOMvel(comVel);
683 >    }    
684 >    com = snap->getCOM();
685 >    comVel = snap->getCOMvel();
686 >    return;
687 >  }        
688 >  
689 >  /**
690 >   * \brief Return inertia tensor for entire system and angular momentum
691 >   *  Vector.
692 >   *
693 >   *
694 >   *
695 >   *    [  Ixx -Ixy  -Ixz ]
696 >   * I =| -Iyx  Iyy  -Iyz |
697 >   *    [ -Izx -Iyz   Izz ]
698 >   */
699 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
700 >                                Vector3d &angularMomentum){
701  
702 <    for (j=0; j<3; j++)
294 <      aVel[j] = vbar * gaussStream->getGaussian();
702 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
703      
704 <    info->integrableObjects[vr]->setVel( aVel );
705 <    
706 <    if(info->integrableObjects[vr]->isDirectional()){
707 <
708 <      info->integrableObjects[vr]->getI( I );
709 <
710 <      if (info->integrableObjects[vr]->isLinear()) {
711 <
712 <        l= info->integrableObjects[vr]->linearAxis();
713 <        m = (l+1)%3;
714 <        n = (l+2)%3;
715 <
716 <        aJ[l] = 0.0;
717 <        vbar = sqrt( 2.0 * kebar * I[m][m] );
718 <        aJ[m] = vbar * gaussStream->getGaussian();
719 <        vbar = sqrt( 2.0 * kebar * I[n][n] );
720 <        aJ[n] = vbar * gaussStream->getGaussian();
704 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
705 >      
706 >      RealType xx = 0.0;
707 >      RealType yy = 0.0;
708 >      RealType zz = 0.0;
709 >      RealType xy = 0.0;
710 >      RealType xz = 0.0;
711 >      RealType yz = 0.0;
712 >      Vector3d com(0.0);
713 >      Vector3d comVel(0.0);
714 >      
715 >      getComAll(com, comVel);
716 >      
717 >      SimInfo::MoleculeIterator i;
718 >      Molecule* mol;
719 >      
720 >      Vector3d thisq(0.0);
721 >      Vector3d thisv(0.0);
722 >      
723 >      RealType thisMass = 0.0;
724 >      
725 >      for (mol = info_->beginMolecule(i); mol != NULL;
726 >           mol = info_->nextMolecule(i)) {
727          
728 <      } else {
729 <        for (j = 0 ; j < 3; j++) {
730 <          vbar = sqrt( 2.0 * kebar * I[j][j] );
731 <          aJ[j] = vbar * gaussStream->getGaussian();
732 <        }      
733 <      } // else isLinear
734 <
735 <      info->integrableObjects[vr]->setJ( aJ );
728 >        thisq = mol->getCom()-com;
729 >        thisv = mol->getComVel()-comVel;
730 >        thisMass = mol->getMass();
731 >        // Compute moment of intertia coefficients.
732 >        xx += thisq[0]*thisq[0]*thisMass;
733 >        yy += thisq[1]*thisq[1]*thisMass;
734 >        zz += thisq[2]*thisq[2]*thisMass;
735 >        
736 >        // compute products of intertia
737 >        xy += thisq[0]*thisq[1]*thisMass;
738 >        xz += thisq[0]*thisq[2]*thisMass;
739 >        yz += thisq[1]*thisq[2]*thisMass;
740 >        
741 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
742 >      }
743        
744 <    }//isDirectional
745 <
746 <  }
747 <
748 <  // Get the Center of Mass drift velocity.
749 <
750 <  getCOMVel(vdrift);
751 <  
752 <  //  Corrects for the center of mass drift.
753 <  // sums all the momentum and divides by total mass.
754 <
755 <  for(vd = 0; vd < nobj; vd++){
744 >      inertiaTensor(0,0) = yy + zz;
745 >      inertiaTensor(0,1) = -xy;
746 >      inertiaTensor(0,2) = -xz;
747 >      inertiaTensor(1,0) = -xy;
748 >      inertiaTensor(1,1) = xx + zz;
749 >      inertiaTensor(1,2) = -yz;
750 >      inertiaTensor(2,0) = -xz;
751 >      inertiaTensor(2,1) = -yz;
752 >      inertiaTensor(2,2) = xx + yy;
753 >      
754 > #ifdef IS_MPI
755 >      MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(),
756 >                    9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757 >      MPI_Allreduce(MPI_IN_PLACE,
758 >                    angularMomentum.getArrayPointer(), 3,
759 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
760 > #endif
761 >      
762 >      snap->setCOMw(angularMomentum);
763 >      snap->setInertiaTensor(inertiaTensor);
764 >    }
765      
766 <    info->integrableObjects[vd]->getVel(aVel);
766 >    angularMomentum = snap->getCOMw();
767 >    inertiaTensor = snap->getInertiaTensor();
768      
769 <    for (j=0; j < 3; j++)
339 <      aVel[j] -= vdrift[j];
340 <        
341 <    info->integrableObjects[vd]->setVel( aVel );
769 >    return;
770    }
771  
344 }
772  
773 < void Thermo::getCOMVel(double vdrift[3]){
347 <
348 <  double mtot, mtot_local;
349 <  double aVel[3], amass;
350 <  double vdrift_local[3];
351 <  int vd, j;
352 <  int nobj;
353 <
354 <  nobj   = info->integrableObjects.size();
355 <
356 <  mtot_local = 0.0;
357 <  vdrift_local[0] = 0.0;
358 <  vdrift_local[1] = 0.0;
359 <  vdrift_local[2] = 0.0;
360 <  
361 <  for(vd = 0; vd < nobj; vd++){
773 >  Mat3x3d Thermo::getBoundingBox(){
774      
775 <    amass = info->integrableObjects[vd]->getMass();
364 <    info->integrableObjects[vd]->getVel( aVel );
365 <
366 <    for(j = 0; j < 3; j++)
367 <      vdrift_local[j] += aVel[j] * amass;
775 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
776      
777 <    mtot_local += amass;
778 <  }
779 <
780 < #ifdef IS_MPI
781 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
782 <  MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
783 < #else
784 <  mtot = mtot_local;
785 <  for(vd = 0; vd < 3; vd++) {
786 <    vdrift[vd] = vdrift_local[vd];
787 <  }
777 >    if (!(snap->hasBoundingBox)) {
778 >      
779 >      SimInfo::MoleculeIterator i;
780 >      Molecule::RigidBodyIterator ri;
781 >      Molecule::AtomIterator ai;
782 >      Molecule* mol;
783 >      RigidBody* rb;
784 >      Atom* atom;
785 >      Vector3d pos, bMax, bMin;
786 >      int index = 0;
787 >      
788 >      for (mol = info_->beginMolecule(i); mol != NULL;
789 >           mol = info_->nextMolecule(i)) {
790 >        
791 >        //change the positions of atoms which belong to the rigidbodies
792 >        for (rb = mol->beginRigidBody(ri); rb != NULL;
793 >             rb = mol->nextRigidBody(ri)) {          
794 >          rb->updateAtoms();
795 >        }
796 >        
797 >        for(atom = mol->beginAtom(ai); atom != NULL;
798 >            atom = mol->nextAtom(ai)) {
799 >          
800 >          pos = atom->getPos();
801 >
802 >          if (index == 0) {
803 >            bMax = pos;
804 >            bMin = pos;
805 >          } else {
806 >            for (int i = 0; i < 3; i++) {
807 >              bMax[i] = max(bMax[i], pos[i]);
808 >              bMin[i] = min(bMin[i], pos[i]);
809 >            }
810 >          }
811 >          index++;
812 >        }
813 >      }
814 >      
815 > #ifdef IS_MPI
816 >      MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE,
817 >                    MPI_MAX, MPI_COMM_WORLD);
818 >
819 >      MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE,
820 >                    MPI_MIN, MPI_COMM_WORLD);
821   #endif
822 +      Mat3x3d bBox = Mat3x3d(0.0);
823 +      for (int i = 0; i < 3; i++) {          
824 +        bBox(i,i) = bMax[i] - bMin[i];
825 +      }
826 +      snap->setBoundingBox(bBox);
827 +    }
828      
829 <  for (vd = 0; vd < 3; vd++) {
383 <    vdrift[vd] = vdrift[vd] / mtot;
829 >    return snap->getBoundingBox();    
830    }
831    
832 < }
833 <
834 < void Thermo::getCOM(double COM[3]){
835 <
390 <  double mtot, mtot_local;
391 <  double aPos[3], amass;
392 <  double COM_local[3];
393 <  int i, j;
394 <  int nobj;
395 <
396 <  mtot_local = 0.0;
397 <  COM_local[0] = 0.0;
398 <  COM_local[1] = 0.0;
399 <  COM_local[2] = 0.0;
400 <
401 <  nobj = info->integrableObjects.size();
402 <  for(i = 0; i < nobj; i++){
832 >  
833 >  // Returns the angular momentum of the system
834 >  Vector3d Thermo::getAngularMomentum(){
835 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
836      
837 <    amass = info->integrableObjects[i]->getMass();
838 <    info->integrableObjects[i]->getPos( aPos );
839 <
840 <    for(j = 0; j < 3; j++)
841 <      COM_local[j] += aPos[j] * amass;
837 >    if (!snap->hasCOMw) {
838 >      
839 >      Vector3d com(0.0);
840 >      Vector3d comVel(0.0);
841 >      Vector3d angularMomentum(0.0);
842 >      
843 >      getComAll(com, comVel);
844 >      
845 >      SimInfo::MoleculeIterator i;
846 >      Molecule* mol;
847 >      
848 >      Vector3d thisr(0.0);
849 >      Vector3d thisp(0.0);
850 >      
851 >      RealType thisMass;
852 >      
853 >      for (mol = info_->beginMolecule(i); mol != NULL;
854 >           mol = info_->nextMolecule(i)) {
855 >        thisMass = mol->getMass();
856 >        thisr = mol->getCom() - com;
857 >        thisp = (mol->getComVel() - comVel) * thisMass;
858 >        
859 >        angularMomentum += cross( thisr, thisp );      
860 >      }  
861 >      
862 > #ifdef IS_MPI
863 >      MPI_Allreduce(MPI_IN_PLACE,
864 >                    angularMomentum.getArrayPointer(), 3,
865 >                    MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
866 > #endif
867 >      
868 >      snap->setCOMw(angularMomentum);
869 >    }
870      
871 <    mtot_local += amass;
871 >    return snap->getCOMw();
872    }
873 +  
874 +  
875 +  /**
876 +   * Returns the Volume of the system based on a ellipsoid with
877 +   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
878 +   * where R_i are related to the principle inertia moments
879 +   *  R_i = sqrt(C*I_i/N), this reduces to
880 +   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
881 +   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
882 +   */
883 +  RealType Thermo::getGyrationalVolume(){
884 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
885 +    
886 +    if (!snap->hasGyrationalVolume) {
887 +      
888 +      Mat3x3d intTensor;
889 +      RealType det;
890 +      Vector3d dummyAngMom;
891 +      RealType sysconstants;
892 +      RealType geomCnst;
893 +      RealType volume;
894 +      
895 +      geomCnst = 3.0/2.0;
896 +      /* Get the inertial tensor and angular momentum for free*/
897 +      getInertiaTensor(intTensor, dummyAngMom);
898 +      
899 +      det = intTensor.determinant();
900 +      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
901 +      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
902  
903 < #ifdef IS_MPI
904 <  MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
905 <  MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD);
416 < #else
417 <  mtot = mtot_local;
418 <  for(i = 0; i < 3; i++) {
419 <    COM[i] = COM_local[i];
903 >      snap->setGyrationalVolume(volume);
904 >    }
905 >    return snap->getGyrationalVolume();
906    }
907 < #endif
907 >  
908 >  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
909 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
910 >
911 >    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
912      
913 <  for (i = 0; i < 3; i++) {
914 <    COM[i] = COM[i] / mtot;
913 >      Mat3x3d intTensor;
914 >      Vector3d dummyAngMom;
915 >      RealType sysconstants;
916 >      RealType geomCnst;
917 >      
918 >      geomCnst = 3.0/2.0;
919 >      /* Get the inertia tensor and angular momentum for free*/
920 >      this->getInertiaTensor(intTensor, dummyAngMom);
921 >      
922 >      detI = intTensor.determinant();
923 >      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
924 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
925 >      snap->setGyrationalVolume(volume);
926 >    } else {
927 >      volume = snap->getGyrationalVolume();
928 >      detI = snap->getInertiaTensor().determinant();
929 >    }
930 >    return;
931    }
932 < }
932 >  
933 >  RealType Thermo::getTaggedAtomPairDistance(){
934 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
935 >    Globals* simParams = info_->getSimParams();
936 >    
937 >    if (simParams->haveTaggedAtomPair() &&
938 >        simParams->havePrintTaggedPairDistance()) {
939 >      if ( simParams->getPrintTaggedPairDistance()) {
940 >        
941 >        pair<int, int> tap = simParams->getTaggedAtomPair();
942 >        Vector3d pos1, pos2, rab;
943 >        
944 > #ifdef IS_MPI        
945 >        int mol1 = info_->getGlobalMolMembership(tap.first);
946 >        int mol2 = info_->getGlobalMolMembership(tap.second);
947  
948 < void Thermo::removeCOMdrift() {
949 <  double vdrift[3], aVel[3];
430 <  int vd, j, nobj;
948 >        int proc1 = info_->getMolToProc(mol1);
949 >        int proc2 = info_->getMolToProc(mol2);
950  
951 <  nobj = info->integrableObjects.size();
951 >        RealType data[3];
952 >        if (proc1 == worldRank) {
953 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
954 >          pos1 = sd1->getPos();
955 >          data[0] = pos1.x();
956 >          data[1] = pos1.y();
957 >          data[2] = pos1.z();          
958 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
959 >        } else {
960 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
961 >          pos1 = Vector3d(data);
962 >        }
963  
964 <  // Get the Center of Mass drift velocity.
964 >        if (proc2 == worldRank) {
965 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
966 >          pos2 = sd2->getPos();
967 >          data[0] = pos2.x();
968 >          data[1] = pos2.y();
969 >          data[2] = pos2.z();  
970 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
971 >        } else {
972 >          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
973 >          pos2 = Vector3d(data);
974 >        }
975 > #else
976 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
977 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
978 >        pos1 = at1->getPos();
979 >        pos2 = at2->getPos();
980 > #endif        
981 >        rab = pos2 - pos1;
982 >        currSnapshot->wrapVector(rab);
983 >        return rab.length();
984 >      }
985 >      return 0.0;    
986 >    }
987 >    return 0.0;
988 >  }
989  
990 <  getCOMVel(vdrift);
991 <  
992 <  //  Corrects for the center of mass drift.
993 <  // sums all the momentum and divides by total mass.
994 <
995 <  for(vd = 0; vd < nobj; vd++){
990 >  RealType Thermo::getHullVolume(){
991 > #ifdef HAVE_QHULL    
992 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
993 >    if (!snap->hasHullVolume) {
994 >      Hull* surfaceMesh_;
995 >      
996 >      Globals* simParams = info_->getSimParams();
997 >      const std::string ht = simParams->getHULL_Method();
998 >      
999 >      if (ht == "Convex") {
1000 >        surfaceMesh_ = new ConvexHull();
1001 >      } else if (ht == "AlphaShape") {
1002 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
1003 >      } else {
1004 >        return 0.0;
1005 >      }
1006 >      
1007 >      // Build a vector of stunt doubles to determine if they are
1008 >      // surface atoms
1009 >      std::vector<StuntDouble*> localSites_;
1010 >      Molecule* mol;
1011 >      StuntDouble* sd;
1012 >      SimInfo::MoleculeIterator i;
1013 >      Molecule::IntegrableObjectIterator  j;
1014 >      
1015 >      for (mol = info_->beginMolecule(i); mol != NULL;
1016 >           mol = info_->nextMolecule(i)) {          
1017 >        for (sd = mol->beginIntegrableObject(j);
1018 >             sd != NULL;
1019 >             sd = mol->nextIntegrableObject(j)) {  
1020 >          localSites_.push_back(sd);
1021 >        }
1022 >      }  
1023 >      
1024 >      // Compute surface Mesh
1025 >      surfaceMesh_->computeHull(localSites_);
1026 >      snap->setHullVolume(surfaceMesh_->getVolume());
1027 >      
1028 >      delete surfaceMesh_;
1029 >    }
1030      
1031 <    info->integrableObjects[vd]->getVel(aVel);
1032 <    
1033 <    for (j=0; j < 3; j++)
1034 <      aVel[j] -= vdrift[j];
447 <        
448 <    info->integrableObjects[vd]->setVel( aVel );
1031 >    return snap->getHullVolume();
1032 > #else
1033 >    return 0.0;
1034 > #endif
1035    }
1036 +
1037 +
1038   }

Comparing trunk/src/brains/Thermo.cpp (property svn:keywords):
Revision 2 by gezelter, Fri Sep 24 04:16:43 2004 UTC vs.
Revision 2022 by gezelter, Fri Sep 26 22:22:28 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines