ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42  
43   #include <math.h>
# Line 49 | Line 50
50   #include "brains/Thermo.hpp"
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53 < #include "utils/OOPSEConstant.hpp"
53 > #include "utils/PhysicalConstants.hpp"
54 > #include "types/FixedChargeAdapter.hpp"
55 > #include "types/FluctuatingChargeAdapter.hpp"
56 > #include "types/MultipoleAdapter.hpp"
57 > #ifdef HAVE_QHULL
58 > #include "math/ConvexHull.hpp"
59 > #include "math/AlphaHull.hpp"
60 > #endif
61  
62 < namespace oopse {
62 > using namespace std;
63 > namespace OpenMD {
64  
65 <  double Thermo::getKinetic() {
66 <    SimInfo::MoleculeIterator miter;
58 <    std::vector<StuntDouble*>::iterator iiter;
59 <    Molecule* mol;
60 <    StuntDouble* integrableObject;    
61 <    Vector3d vel;
62 <    Vector3d angMom;
63 <    Mat3x3d I;
64 <    int i;
65 <    int j;
66 <    int k;
67 <    double kinetic = 0.0;
68 <    double kinetic_global = 0.0;
69 <    
70 <    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
71 <      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
72 <           integrableObject = mol->nextIntegrableObject(iiter)) {
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67  
68 <        double mass = integrableObject->getMass();
69 <        Vector3d vel = integrableObject->getVel();
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79 >        
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93 >                                MPI::SUM);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100 >    }
101 >    return snap->getTranslationalKineticEnergy();
102 >  }
103  
104 <        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
104 >  RealType Thermo::getRotationalKinetic() {
105 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106  
107 <        if (integrableObject->isDirectional()) {
108 <          angMom = integrableObject->getJ();
109 <          I = integrableObject->getI();
110 <
111 <          if (integrableObject->isLinear()) {
112 <            i = integrableObject->linearAxis();
113 <            j = (i + 1) % 3;
114 <            k = (i + 2) % 3;
115 <            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
116 <          } else {                        
117 <            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
118 <              + angMom[2]*angMom[2]/I(2, 2);
119 <          }
120 <        }
107 >    if (!snap->hasRotationalKineticEnergy) {
108 >      SimInfo::MoleculeIterator miter;
109 >      vector<StuntDouble*>::iterator iiter;
110 >      Molecule* mol;
111 >      StuntDouble* sd;    
112 >      Vector3d angMom;
113 >      Mat3x3d I;
114 >      int i, j, k;
115 >      RealType kinetic(0.0);
116 >      
117 >      for (mol = info_->beginMolecule(miter); mol != NULL;
118 >           mol = info_->nextMolecule(miter)) {
119 >        
120 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 >             sd = mol->nextIntegrableObject(iiter)) {
122 >          
123 >          if (sd->isDirectional()) {
124 >            angMom = sd->getJ();
125 >            I = sd->getI();
126              
127 +            if (sd->isLinear()) {
128 +              i = sd->linearAxis();
129 +              j = (i + 1) % 3;
130 +              k = (i + 2) % 3;
131 +              kinetic += angMom[j] * angMom[j] / I(j, j)
132 +                + angMom[k] * angMom[k] / I(k, k);
133 +            } else {                        
134 +              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 +                + angMom[1]*angMom[1]/I(1, 1)
136 +                + angMom[2]*angMom[2]/I(2, 2);
137 +            }
138 +          }          
139 +        }
140        }
141 <    }
96 <    
141 >      
142   #ifdef IS_MPI
143 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144 +                                MPI::SUM);
145 + #endif
146 +      
147 +      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 +          
149 +      snap->setRotationalKineticEnergy(kinetic);
150 +    }
151 +    return snap->getRotationalKineticEnergy();
152 +  }
153  
154 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
100 <                  MPI_COMM_WORLD);
101 <    kinetic = kinetic_global;
154 >      
155  
156 < #endif //is_mpi
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
160 <
161 <    return kinetic;
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164    }
165  
166 <  double Thermo::getPotential() {
111 <    double potential = 0.0;
112 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
113 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
166 >  RealType Thermo::getPotential() {
167  
168 <    // Get total potential for entire system from MPI.
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 < #ifdef IS_MPI
172 <
120 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
121 <                  MPI_COMM_WORLD);
122 <
123 < #else
124 <
125 <    potential = potential_local;
126 <
127 < #endif // is_mpi
128 <
129 <    return potential;
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173    }
174  
175 <  double Thermo::getTotalE() {
133 <    double total;
175 >  RealType Thermo::getTotalEnergy() {
176  
177 <    total = this->getKinetic() + this->getPotential();
136 <    return total;
137 <  }
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <  double Thermo::getTemperature() {
180 <    
181 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
142 <    return temperature;
143 <  }
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 <  double Thermo::getVolume() {
146 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
147 <    return curSnapshot->getVolume();
183 >    return snap->getTotalEnergy();
184    }
185  
186 <  double Thermo::getPressure() {
186 >  RealType Thermo::getTemperature() {
187  
188 <    // Relies on the calculation of the full molecular pressure tensor
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 +    if (!snap->hasTemperature) {
191  
192 <    Mat3x3d tensor;
193 <    double pressure;
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 <    tensor = getPressureTensor();
196 <
197 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
198 <
162 <    return pressure;
195 >      snap->setTemperature(temperature);
196 >    }
197 >    
198 >    return snap->getTemperature();
199    }
200  
201 <  double Thermo::getPressure(int direction) {
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <    // Relies on the calculation of the full molecular pressure tensor
205 <
206 <          
207 <    Mat3x3d tensor;
208 <    double pressure;
209 <
210 <    tensor = getPressureTensor();
211 <
212 <    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231 >                                MPI::SUM);
232 > #endif
233  
234 <    return pressure;
234 >      kinetic *= 0.5;
235 >      eTemp =  (2.0 * kinetic) /
236 >        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237 >    
238 >      snap->setElectronicTemperature(eTemp);
239 >    }
240 >
241 >    return snap->getElectronicTemperature();
242    }
243  
244  
245 +  RealType Thermo::getVolume() {
246 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 +    return snap->getVolume();
248 +  }
249  
250 +  RealType Thermo::getPressure() {
251 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252 +
253 +    if (!snap->hasPressure) {
254 +      // Relies on the calculation of the full molecular pressure tensor
255 +      
256 +      Mat3x3d tensor;
257 +      RealType pressure;
258 +      
259 +      tensor = getPressureTensor();
260 +      
261 +      pressure = PhysicalConstants::pressureConvert *
262 +        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 +      
264 +      snap->setPressure(pressure);
265 +    }
266 +    
267 +    return snap->getPressure();    
268 +  }
269 +
270    Mat3x3d Thermo::getPressureTensor() {
271      // returns pressure tensor in units amu*fs^-2*Ang^-1
272      // routine derived via viral theorem description in:
273      // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 <    Mat3x3d pressureTensor;
187 <    Mat3x3d p_local(0.0);
188 <    Mat3x3d p_global(0.0);
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <    SimInfo::MoleculeIterator i;
191 <    std::vector<StuntDouble*>::iterator j;
192 <    Molecule* mol;
193 <    StuntDouble* integrableObject;    
194 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
195 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
196 <           integrableObject = mol->nextIntegrableObject(j)) {
276 >    if (!snap->hasPressureTensor) {
277  
278 <        double mass = integrableObject->getMass();
279 <        Vector3d vcom = integrableObject->getVel();
280 <        p_local += mass * outProduct(vcom, vcom);        
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297        }
298 +      
299 + #ifdef IS_MPI
300 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301 +                                MPI::REALTYPE, MPI::SUM);
302 + #endif
303 +      
304 +      RealType volume = this->getVolume();
305 +      Mat3x3d stressTensor = snap->getStressTensor();
306 +      
307 +      pressureTensor =  (p_tens +
308 +                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 +      
310 +      snap->setPressureTensor(pressureTensor);
311      }
312 <    
312 >    return snap->getPressureTensor();
313 >  }
314 >
315 >
316 >
317 >
318 >  Vector3d Thermo::getSystemDipole() {
319 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 >
321 >    if (!snap->hasSystemDipole) {
322 >      SimInfo::MoleculeIterator miter;
323 >      vector<Atom*>::iterator aiter;
324 >      Molecule* mol;
325 >      Atom* atom;
326 >      RealType charge;
327 >      RealType moment(0.0);
328 >      Vector3d ri(0.0);
329 >      Vector3d dipoleVector(0.0);
330 >      Vector3d nPos(0.0);
331 >      Vector3d pPos(0.0);
332 >      RealType nChg(0.0);
333 >      RealType pChg(0.0);
334 >      int nCount = 0;
335 >      int pCount = 0;
336 >      
337 >      RealType chargeToC = 1.60217733e-19;
338 >      RealType angstromToM = 1.0e-10;
339 >      RealType debyeToCm = 3.33564095198e-30;
340 >      
341 >      for (mol = info_->beginMolecule(miter); mol != NULL;
342 >           mol = info_->nextMolecule(miter)) {
343 >        
344 >        for (atom = mol->beginAtom(aiter); atom != NULL;
345 >             atom = mol->nextAtom(aiter)) {
346 >          
347 >          charge = 0.0;
348 >          
349 >          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
350 >          if ( fca.isFixedCharge() ) {
351 >            charge = fca.getCharge();
352 >          }
353 >          
354 >          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
355 >          if ( fqa.isFluctuatingCharge() ) {
356 >            charge += atom->getFlucQPos();
357 >          }
358 >          
359 >          charge *= chargeToC;
360 >          
361 >          ri = atom->getPos();
362 >          snap->wrapVector(ri);
363 >          ri *= angstromToM;
364 >          
365 >          if (charge < 0.0) {
366 >            nPos += ri;
367 >            nChg -= charge;
368 >            nCount++;
369 >          } else if (charge > 0.0) {
370 >            pPos += ri;
371 >            pChg += charge;
372 >            pCount++;
373 >          }
374 >          
375 >          MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
376 >          if (ma.isDipole() ) {
377 >            Vector3d u_i = atom->getElectroFrame().getColumn(2);
378 >            moment = ma.getDipoleMoment();
379 >            moment *= debyeToCm;
380 >            dipoleVector += u_i * moment;
381 >          }
382 >        }
383 >      }
384 >      
385 >      
386   #ifdef IS_MPI
387 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
388 < #else
389 <    p_global = p_local;
390 < #endif // is_mpi
387 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
388 >                                MPI::SUM);
389 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
390 >                                MPI::SUM);
391  
392 <    double volume = this->getVolume();
393 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
394 <    Mat3x3d tau = curSnapshot->statData.getTau();
392 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
393 >                                MPI::SUM);
394 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
395 >                                MPI::SUM);
396  
397 <    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
397 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
398 >                                MPI::REALTYPE, MPI::SUM);
399 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
400 >                                MPI::REALTYPE, MPI::SUM);
401  
402 <    return pressureTensor;
402 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
403 >                                3, MPI::REALTYPE, MPI::SUM);
404 > #endif
405 >      
406 >      // first load the accumulated dipole moment (if dipoles were present)
407 >      Vector3d boxDipole = dipoleVector;
408 >      // now include the dipole moment due to charges
409 >      // use the lesser of the positive and negative charge totals
410 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
411 >      
412 >      // find the average positions
413 >      if (pCount > 0 && nCount > 0 ) {
414 >        pPos /= pCount;
415 >        nPos /= nCount;
416 >      }
417 >      
418 >      // dipole is from the negative to the positive (physics notation)
419 >      boxDipole += (pPos - nPos) * chg_value;
420 >      snap->setSystemDipole(boxDipole);
421 >    }
422 >
423 >    return snap->getSystemDipole();
424    }
425  
426 <  void Thermo::saveStat(){
426 >  // Returns the Heat Flux Vector for the system
427 >  Vector3d Thermo::getHeatFlux(){
428      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
429 <    Stats& stat = currSnapshot->statData;
430 <    
431 <    stat[Stats::KINETIC_ENERGY] = getKinetic();
432 <    stat[Stats::POTENTIAL_ENERGY] = getPotential();
433 <    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
434 <    stat[Stats::TEMPERATURE] = getTemperature();
435 <    stat[Stats::PRESSURE] = getPressure();
436 <    stat[Stats::VOLUME] = getVolume();      
437 <
438 <    Mat3x3d tensor =getPressureTensor();
439 <    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
440 <    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
441 <    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
429 >    SimInfo::MoleculeIterator miter;
430 >    vector<StuntDouble*>::iterator iiter;
431 >    Molecule* mol;
432 >    StuntDouble* sd;    
433 >    RigidBody::AtomIterator ai;
434 >    Atom* atom;      
435 >    Vector3d vel;
436 >    Vector3d angMom;
437 >    Mat3x3d I;
438 >    int i;
439 >    int j;
440 >    int k;
441 >    RealType mass;
442  
443 +    Vector3d x_a;
444 +    RealType kinetic;
445 +    RealType potential;
446 +    RealType eatom;
447 +    // Convective portion of the heat flux
448 +    Vector3d heatFluxJc = V3Zero;
449  
450 <    /**@todo need refactorying*/
451 <    //Conserved Quantity is set by integrator and time is set by setTime
450 >    /* Calculate convective portion of the heat flux */
451 >    for (mol = info_->beginMolecule(miter); mol != NULL;
452 >         mol = info_->nextMolecule(miter)) {
453 >      
454 >      for (sd = mol->beginIntegrableObject(iiter);
455 >           sd != NULL;
456 >           sd = mol->nextIntegrableObject(iiter)) {
457 >        
458 >        mass = sd->getMass();
459 >        vel = sd->getVel();
460 >
461 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
462 >        
463 >        if (sd->isDirectional()) {
464 >          angMom = sd->getJ();
465 >          I = sd->getI();
466 >
467 >          if (sd->isLinear()) {
468 >            i = sd->linearAxis();
469 >            j = (i + 1) % 3;
470 >            k = (i + 2) % 3;
471 >            kinetic += angMom[j] * angMom[j] / I(j, j)
472 >              + angMom[k] * angMom[k] / I(k, k);
473 >          } else {                        
474 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
475 >              + angMom[1]*angMom[1]/I(1, 1)
476 >              + angMom[2]*angMom[2]/I(2, 2);
477 >          }
478 >        }
479 >
480 >        potential = 0.0;
481 >
482 >        if (sd->isRigidBody()) {
483 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
484 >          for (atom = rb->beginAtom(ai); atom != NULL;
485 >               atom = rb->nextAtom(ai)) {
486 >            potential +=  atom->getParticlePot();
487 >          }          
488 >        } else {
489 >          potential = sd->getParticlePot();
490 >        }
491 >
492 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
493 >        // The potential may not be a 1/2 factor
494 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
495 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
496 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
497 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
498 >      }
499 >    }
500 >
501 >    /* The J_v vector is reduced in the forceManager so everyone has
502 >     *  the global Jv. Jc is computed over the local atoms and must be
503 >     *  reduced among all processors.
504 >     */
505 > #ifdef IS_MPI
506 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
507 >                              MPI::SUM);
508 > #endif
509      
510 +    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
511 +
512 +    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
513 +      PhysicalConstants::energyConvert;
514 +        
515 +    // Correct for the fact the flux is 1/V (Jc + Jv)
516 +    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
517    }
518  
519 < } //end namespace oopse
519 >
520 >  Vector3d Thermo::getComVel(){
521 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
522 >
523 >    if (!snap->hasCOMvel) {
524 >
525 >      SimInfo::MoleculeIterator i;
526 >      Molecule* mol;
527 >      
528 >      Vector3d comVel(0.0);
529 >      RealType totalMass(0.0);
530 >      
531 >      for (mol = info_->beginMolecule(i); mol != NULL;
532 >           mol = info_->nextMolecule(i)) {
533 >        RealType mass = mol->getMass();
534 >        totalMass += mass;
535 >        comVel += mass * mol->getComVel();
536 >      }  
537 >      
538 > #ifdef IS_MPI
539 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
540 >                                MPI::SUM);
541 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
542 >                                MPI::REALTYPE, MPI::SUM);
543 > #endif
544 >      
545 >      comVel /= totalMass;
546 >      snap->setCOMvel(comVel);
547 >    }
548 >    return snap->getCOMvel();
549 >  }
550 >
551 >  Vector3d Thermo::getCom(){
552 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
553 >
554 >    if (!snap->hasCOM) {
555 >      
556 >      SimInfo::MoleculeIterator i;
557 >      Molecule* mol;
558 >      
559 >      Vector3d com(0.0);
560 >      RealType totalMass(0.0);
561 >      
562 >      for (mol = info_->beginMolecule(i); mol != NULL;
563 >           mol = info_->nextMolecule(i)) {
564 >        RealType mass = mol->getMass();
565 >        totalMass += mass;
566 >        com += mass * mol->getCom();
567 >      }  
568 >      
569 > #ifdef IS_MPI
570 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
571 >                                MPI::SUM);
572 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
573 >                                MPI::REALTYPE, MPI::SUM);
574 > #endif
575 >      
576 >      com /= totalMass;
577 >      snap->setCOM(com);
578 >    }
579 >    return snap->getCOM();
580 >  }        
581 >
582 >  /**
583 >   * Returns center of mass and center of mass velocity in one
584 >   * function call.
585 >   */  
586 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
587 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
588 >
589 >    if (!(snap->hasCOM && snap->hasCOMvel)) {
590 >
591 >      SimInfo::MoleculeIterator i;
592 >      Molecule* mol;
593 >      
594 >      RealType totalMass(0.0);
595 >      
596 >      com = 0.0;
597 >      comVel = 0.0;
598 >      
599 >      for (mol = info_->beginMolecule(i); mol != NULL;
600 >           mol = info_->nextMolecule(i)) {
601 >        RealType mass = mol->getMass();
602 >        totalMass += mass;
603 >        com += mass * mol->getCom();
604 >        comVel += mass * mol->getComVel();          
605 >      }  
606 >      
607 > #ifdef IS_MPI
608 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
609 >                                MPI::SUM);
610 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
611 >                                MPI::REALTYPE, MPI::SUM);
612 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
613 >                                MPI::REALTYPE, MPI::SUM);
614 > #endif
615 >      
616 >      com /= totalMass;
617 >      comVel /= totalMass;
618 >      snap->setCOM(com);
619 >      snap->setCOMvel(comVel);
620 >    }    
621 >    com = snap->getCOM();
622 >    comVel = snap->getCOMvel();
623 >    return;
624 >  }        
625 >  
626 >  /**
627 >   * Return intertia tensor for entire system and angular momentum
628 >   * Vector.
629 >   *
630 >   *
631 >   *
632 >   *    [  Ixx -Ixy  -Ixz ]
633 >   * I =| -Iyx  Iyy  -Iyz |
634 >   *    [ -Izx -Iyz   Izz ]
635 >   */
636 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
637 >                                Vector3d &angularMomentum){
638 >
639 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
640 >    
641 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
642 >      
643 >      RealType xx = 0.0;
644 >      RealType yy = 0.0;
645 >      RealType zz = 0.0;
646 >      RealType xy = 0.0;
647 >      RealType xz = 0.0;
648 >      RealType yz = 0.0;
649 >      Vector3d com(0.0);
650 >      Vector3d comVel(0.0);
651 >      
652 >      getComAll(com, comVel);
653 >      
654 >      SimInfo::MoleculeIterator i;
655 >      Molecule* mol;
656 >      
657 >      Vector3d thisq(0.0);
658 >      Vector3d thisv(0.0);
659 >      
660 >      RealType thisMass = 0.0;
661 >      
662 >      for (mol = info_->beginMolecule(i); mol != NULL;
663 >           mol = info_->nextMolecule(i)) {
664 >        
665 >        thisq = mol->getCom()-com;
666 >        thisv = mol->getComVel()-comVel;
667 >        thisMass = mol->getMass();
668 >        // Compute moment of intertia coefficients.
669 >        xx += thisq[0]*thisq[0]*thisMass;
670 >        yy += thisq[1]*thisq[1]*thisMass;
671 >        zz += thisq[2]*thisq[2]*thisMass;
672 >        
673 >        // compute products of intertia
674 >        xy += thisq[0]*thisq[1]*thisMass;
675 >        xz += thisq[0]*thisq[2]*thisMass;
676 >        yz += thisq[1]*thisq[2]*thisMass;
677 >        
678 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
679 >      }
680 >      
681 >      inertiaTensor(0,0) = yy + zz;
682 >      inertiaTensor(0,1) = -xy;
683 >      inertiaTensor(0,2) = -xz;
684 >      inertiaTensor(1,0) = -xy;
685 >      inertiaTensor(1,1) = xx + zz;
686 >      inertiaTensor(1,2) = -yz;
687 >      inertiaTensor(2,0) = -xz;
688 >      inertiaTensor(2,1) = -yz;
689 >      inertiaTensor(2,2) = xx + yy;
690 >      
691 > #ifdef IS_MPI
692 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
693 >                                9, MPI::REALTYPE, MPI::SUM);
694 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
695 >                                angularMomentum.getArrayPointer(), 3,
696 >                                MPI::REALTYPE, MPI::SUM);
697 > #endif
698 >      
699 >      snap->setCOMw(angularMomentum);
700 >      snap->setInertiaTensor(inertiaTensor);
701 >    }
702 >    
703 >    angularMomentum = snap->getCOMw();
704 >    inertiaTensor = snap->getInertiaTensor();
705 >    
706 >    return;
707 >  }
708 >
709 >  // Returns the angular momentum of the system
710 >  Vector3d Thermo::getAngularMomentum(){
711 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
712 >    
713 >    if (!snap->hasCOMw) {
714 >      
715 >      Vector3d com(0.0);
716 >      Vector3d comVel(0.0);
717 >      Vector3d angularMomentum(0.0);
718 >      
719 >      getComAll(com, comVel);
720 >      
721 >      SimInfo::MoleculeIterator i;
722 >      Molecule* mol;
723 >      
724 >      Vector3d thisr(0.0);
725 >      Vector3d thisp(0.0);
726 >      
727 >      RealType thisMass;
728 >      
729 >      for (mol = info_->beginMolecule(i); mol != NULL;
730 >           mol = info_->nextMolecule(i)) {
731 >        thisMass = mol->getMass();
732 >        thisr = mol->getCom() - com;
733 >        thisp = (mol->getComVel() - comVel) * thisMass;
734 >        
735 >        angularMomentum += cross( thisr, thisp );      
736 >      }  
737 >      
738 > #ifdef IS_MPI
739 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
740 >                                angularMomentum.getArrayPointer(), 3,
741 >                                MPI::REALTYPE, MPI::SUM);
742 > #endif
743 >      
744 >      snap->setCOMw(angularMomentum);
745 >    }
746 >    
747 >    return snap->getCOMw();
748 >  }
749 >  
750 >  
751 >  /**
752 >   * Returns the Volume of the system based on a ellipsoid with
753 >   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
754 >   * where R_i are related to the principle inertia moments
755 >   *  R_i = sqrt(C*I_i/N), this reduces to
756 >   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
757 >   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
758 >   */
759 >  RealType Thermo::getGyrationalVolume(){
760 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
761 >    
762 >    if (!snap->hasGyrationalVolume) {
763 >      
764 >      Mat3x3d intTensor;
765 >      RealType det;
766 >      Vector3d dummyAngMom;
767 >      RealType sysconstants;
768 >      RealType geomCnst;
769 >      RealType volume;
770 >      
771 >      geomCnst = 3.0/2.0;
772 >      /* Get the inertial tensor and angular momentum for free*/
773 >      getInertiaTensor(intTensor, dummyAngMom);
774 >      
775 >      det = intTensor.determinant();
776 >      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
777 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
778 >
779 >      snap->setGyrationalVolume(volume);
780 >    }
781 >    return snap->getGyrationalVolume();
782 >  }
783 >  
784 >  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
785 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
786 >
787 >    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
788 >    
789 >      Mat3x3d intTensor;
790 >      Vector3d dummyAngMom;
791 >      RealType sysconstants;
792 >      RealType geomCnst;
793 >      
794 >      geomCnst = 3.0/2.0;
795 >      /* Get the inertia tensor and angular momentum for free*/
796 >      this->getInertiaTensor(intTensor, dummyAngMom);
797 >      
798 >      detI = intTensor.determinant();
799 >      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
800 >      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
801 >      snap->setGyrationalVolume(volume);
802 >    } else {
803 >      volume = snap->getGyrationalVolume();
804 >      detI = snap->getInertiaTensor().determinant();
805 >    }
806 >    return;
807 >  }
808 >  
809 >  RealType Thermo::getTaggedAtomPairDistance(){
810 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
811 >    Globals* simParams = info_->getSimParams();
812 >    
813 >    if (simParams->haveTaggedAtomPair() &&
814 >        simParams->havePrintTaggedPairDistance()) {
815 >      if ( simParams->getPrintTaggedPairDistance()) {
816 >        
817 >        pair<int, int> tap = simParams->getTaggedAtomPair();
818 >        Vector3d pos1, pos2, rab;
819 >        
820 > #ifdef IS_MPI        
821 >        int mol1 = info_->getGlobalMolMembership(tap.first);
822 >        int mol2 = info_->getGlobalMolMembership(tap.second);
823 >
824 >        int proc1 = info_->getMolToProc(mol1);
825 >        int proc2 = info_->getMolToProc(mol2);
826 >
827 >        RealType data[3];
828 >        if (proc1 == worldRank) {
829 >          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
830 >          pos1 = sd1->getPos();
831 >          data[0] = pos1.x();
832 >          data[1] = pos1.y();
833 >          data[2] = pos1.z();          
834 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
835 >        } else {
836 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc1);
837 >          pos1 = Vector3d(data);
838 >        }
839 >
840 >        if (proc2 == worldRank) {
841 >          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
842 >          pos2 = sd2->getPos();
843 >          data[0] = pos2.x();
844 >          data[1] = pos2.y();
845 >          data[2] = pos2.z();  
846 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
847 >        } else {
848 >          MPI::COMM_WORLD.Bcast(data, 3, MPI::REALTYPE, proc2);
849 >          pos2 = Vector3d(data);
850 >        }
851 > #else
852 >        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
853 >        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
854 >        pos1 = at1->getPos();
855 >        pos2 = at2->getPos();
856 > #endif        
857 >        rab = pos2 - pos1;
858 >        currSnapshot->wrapVector(rab);
859 >        return rab.length();
860 >      }
861 >      return 0.0;    
862 >    }
863 >    return 0.0;
864 >  }
865 >
866 >  RealType Thermo::getHullVolume(){
867 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
868 >
869 > #ifdef HAVE_QHULL    
870 >    if (!snap->hasHullVolume) {
871 >      Hull* surfaceMesh_;
872 >
873 >      Globals* simParams = info_->getSimParams();
874 >      const std::string ht = simParams->getHULL_Method();
875 >      
876 >      if (ht == "Convex") {
877 >        surfaceMesh_ = new ConvexHull();
878 >      } else if (ht == "AlphaShape") {
879 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
880 >      } else {
881 >        return 0.0;
882 >      }
883 >      
884 >      // Build a vector of stunt doubles to determine if they are
885 >      // surface atoms
886 >      std::vector<StuntDouble*> localSites_;
887 >      Molecule* mol;
888 >      StuntDouble* sd;
889 >      SimInfo::MoleculeIterator i;
890 >      Molecule::IntegrableObjectIterator  j;
891 >      
892 >      for (mol = info_->beginMolecule(i); mol != NULL;
893 >           mol = info_->nextMolecule(i)) {          
894 >        for (sd = mol->beginIntegrableObject(j);
895 >             sd != NULL;
896 >             sd = mol->nextIntegrableObject(j)) {  
897 >          localSites_.push_back(sd);
898 >        }
899 >      }  
900 >      
901 >      // Compute surface Mesh
902 >      surfaceMesh_->computeHull(localSites_);
903 >      snap->setHullVolume(surfaceMesh_->getVolume());
904 >    }
905 >    return snap->getHullVolume();
906 > #else
907 >    return 0.0;
908 > #endif
909 >  }
910 > }

Comparing trunk/src/brains/Thermo.cpp (property svn:keywords):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 1796 by gezelter, Mon Sep 10 18:38:44 2012 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines