ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 1666 by chuckv, Wed Dec 14 20:21:54 2011 UTC

# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 + * [4]  Vardeman & Gezelter, in progress (2009).
40   */
41 <
41 >
42   #include <math.h>
43   #include <iostream>
44  
# Line 49 | Line 49
49   #include "brains/Thermo.hpp"
50   #include "primitives/Molecule.hpp"
51   #include "utils/simError.h"
52 < #include "utils/OOPSEConstant.hpp"
52 > #include "utils/PhysicalConstants.hpp"
53  
54 < namespace oopse {
54 > namespace OpenMD {
55  
56 <  double Thermo::getKinetic() {
56 >  RealType Thermo::getKinetic() {
57      SimInfo::MoleculeIterator miter;
58      std::vector<StuntDouble*>::iterator iiter;
59      Molecule* mol;
60 <    StuntDouble* integrableObject;    
60 >    StuntDouble* integrableObject;
61      Vector3d vel;
62      Vector3d angMom;
63      Mat3x3d I;
64      int i;
65      int j;
66      int k;
67 <    double kinetic = 0.0;
68 <    double kinetic_global = 0.0;
69 <    
67 >    RealType mass;
68 >    RealType kinetic = 0.0;
69 >    RealType kinetic_global = 0.0;
70 >
71      for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 <      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73 <           integrableObject = mol->nextIntegrableObject(iiter)) {
72 >      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73 >     integrableObject = mol->nextIntegrableObject(iiter)) {
74  
75 <        double mass = integrableObject->getMass();
76 <        Vector3d vel = integrableObject->getVel();
75 >  mass = integrableObject->getMass();
76 >  vel = integrableObject->getVel();
77  
78 <        kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
78 >  kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79  
80 <        if (integrableObject->isDirectional()) {
81 <          angMom = integrableObject->getJ();
82 <          I = integrableObject->getI();
80 >  if (integrableObject->isDirectional()) {
81 >    angMom = integrableObject->getJ();
82 >    I = integrableObject->getI();
83  
84 <          if (integrableObject->isLinear()) {
85 <            i = integrableObject->linearAxis();
86 <            j = (i + 1) % 3;
87 <            k = (i + 2) % 3;
88 <            kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89 <          } else {                        
90 <            kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91 <              + angMom[2]*angMom[2]/I(2, 2);
92 <          }
93 <        }
94 <            
84 >    if (integrableObject->isLinear()) {
85 >      i = integrableObject->linearAxis();
86 >      j = (i + 1) % 3;
87 >      k = (i + 2) % 3;
88 >      kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89 >    } else {
90 >      kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91 >        + angMom[2]*angMom[2]/I(2, 2);
92 >    }
93 >  }
94 >
95        }
96      }
97 <    
97 >
98   #ifdef IS_MPI
99  
100 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_DOUBLE, MPI_SUM,
100 >    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101                    MPI_COMM_WORLD);
102      kinetic = kinetic_global;
103  
104   #endif //is_mpi
105  
106 <    kinetic = kinetic * 0.5 / OOPSEConstant::energyConvert;
106 >    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
107  
108      return kinetic;
109    }
110  
111 <  double Thermo::getPotential() {
112 <    double potential = 0.0;
111 >  RealType Thermo::getPotential() {
112 >    RealType potential = 0.0;
113      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 <    double potential_local = curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL] +
114 <      curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
114 >    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115  
116      // Get total potential for entire system from MPI.
117  
118   #ifdef IS_MPI
119  
120 <    MPI_Allreduce(&potential_local, &potential, 1, MPI_DOUBLE, MPI_SUM,
120 >    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121                    MPI_COMM_WORLD);
122 +    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123  
124   #else
125  
126 <    potential = potential_local;
126 >    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127  
128   #endif // is_mpi
129  
130      return potential;
131    }
132  
133 <  double Thermo::getTotalE() {
134 <    double total;
133 >  RealType Thermo::getTotalE() {
134 >    RealType total;
135  
136      total = this->getKinetic() + this->getPotential();
137      return total;
138    }
139  
140 <  double Thermo::getTemperature() {
141 <    
142 <    double temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* OOPSEConstant::kb );
140 >  RealType Thermo::getTemperature() {
141 >
142 >    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
143      return temperature;
144    }
145  
146 <  double Thermo::getVolume() {
146 >  RealType Thermo::getVolume() {
147      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148      return curSnapshot->getVolume();
149    }
150  
151 <  double Thermo::getPressure() {
151 >  RealType Thermo::getPressure() {
152  
153      // Relies on the calculation of the full molecular pressure tensor
154  
155  
156      Mat3x3d tensor;
157 <    double pressure;
157 >    RealType pressure;
158  
159      tensor = getPressureTensor();
160  
161 <    pressure = OOPSEConstant::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
161 >    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162  
163      return pressure;
164    }
165  
166 <  double Thermo::getPressure(int direction) {
166 >  RealType Thermo::getPressure(int direction) {
167  
168      // Relies on the calculation of the full molecular pressure tensor
169  
170 <          
170 >
171      Mat3x3d tensor;
172 <    double pressure;
172 >    RealType pressure;
173  
174      tensor = getPressureTensor();
175  
176 <    pressure = OOPSEConstant::pressureConvert * tensor(direction, direction);
176 >    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
177  
178      return pressure;
179    }
180  
180
181
181    Mat3x3d Thermo::getPressureTensor() {
182      // returns pressure tensor in units amu*fs^-2*Ang^-1
183      // routine derived via viral theorem description in:
# Line 190 | Line 189 | namespace oopse {
189      SimInfo::MoleculeIterator i;
190      std::vector<StuntDouble*>::iterator j;
191      Molecule* mol;
192 <    StuntDouble* integrableObject;    
192 >    StuntDouble* integrableObject;
193      for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195 <           integrableObject = mol->nextIntegrableObject(j)) {
194 >      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195 >     integrableObject = mol->nextIntegrableObject(j)) {
196  
197 <        double mass = integrableObject->getMass();
198 <        Vector3d vcom = integrableObject->getVel();
199 <        p_local += mass * outProduct(vcom, vcom);        
197 >  RealType mass = integrableObject->getMass();
198 >  Vector3d vcom = integrableObject->getVel();
199 >  p_local += mass * outProduct(vcom, vcom);
200        }
201      }
202 <    
202 >
203   #ifdef IS_MPI
204 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
204 >    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205   #else
206      p_global = p_local;
207   #endif // is_mpi
208  
209 <    double volume = this->getVolume();
209 >    RealType volume = this->getVolume();
210      Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211      Mat3x3d tau = curSnapshot->statData.getTau();
212  
213 <    pressureTensor =  (p_global + OOPSEConstant::energyConvert* tau)/volume;
213 >    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
214  
215      return pressureTensor;
216    }
217  
218 +
219    void Thermo::saveStat(){
220      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221      Stats& stat = currSnapshot->statData;
222 <    
222 >
223      stat[Stats::KINETIC_ENERGY] = getKinetic();
224      stat[Stats::POTENTIAL_ENERGY] = getPotential();
225      stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
226      stat[Stats::TEMPERATURE] = getTemperature();
227      stat[Stats::PRESSURE] = getPressure();
228 <    stat[Stats::VOLUME] = getVolume();      
228 >    stat[Stats::VOLUME] = getVolume();
229  
230      Mat3x3d tensor =getPressureTensor();
231 <    stat[Stats::PRESSURE_TENSOR_X] = tensor(0, 0);      
232 <    stat[Stats::PRESSURE_TENSOR_Y] = tensor(1, 1);      
233 <    stat[Stats::PRESSURE_TENSOR_Z] = tensor(2, 2);      
231 >    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
232 >    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
233 >    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
234 >    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
235 >    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
236 >    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
237 >    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
238 >    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
239 >    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
240 >    Vector3d GKappa_t = getThermalHelfand();
241 >    stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x();
242 >    stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y();
243 >    stat[Stats::THERMAL_HELFANDMOMENT_Z] = GKappa_t.z();
244  
245 +    Globals* simParams = info_->getSimParams();
246 +
247 +    if (simParams->haveTaggedAtomPair() &&
248 +        simParams->havePrintTaggedPairDistance()) {
249 +      if ( simParams->getPrintTaggedPairDistance()) {
250 +
251 +        std::pair<int, int> tap = simParams->getTaggedAtomPair();
252 +        Vector3d pos1, pos2, rab;
253 +
254 + #ifdef IS_MPI
255 +        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
256 +
257 +  int mol1 = info_->getGlobalMolMembership(tap.first);
258 +  int mol2 = info_->getGlobalMolMembership(tap.second);
259 +        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
260 +
261 +        int proc1 = info_->getMolToProc(mol1);
262 +        int proc2 = info_->getMolToProc(mol2);
263 +
264 +        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
265 +
266 +  RealType data[3];
267 +        if (proc1 == worldRank) {
268 +          StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
269 +          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
270 +          pos1 = sd1->getPos();
271 +          data[0] = pos1.x();
272 +          data[1] = pos1.y();
273 +          data[2] = pos1.z();
274 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
275 +        } else {
276 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
277 +          pos1 = Vector3d(data);
278 +        }
279 +
280 +
281 +        if (proc2 == worldRank) {
282 +          StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
283 +          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
284 +          pos2 = sd2->getPos();
285 +          data[0] = pos2.x();
286 +          data[1] = pos2.y();
287 +          data[2] = pos2.z();
288 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
289 +        } else {
290 +          MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
291 +          pos2 = Vector3d(data);
292 +        }
293 + #else
294 +        StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
295 +        StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
296 +        pos1 = at1->getPos();
297 +        pos2 = at2->getPos();
298 + #endif
299 +        rab = pos2 - pos1;
300 +        currSnapshot->wrapVector(rab);
301 +        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
302 +      }
303 +    }
304  
305      /**@todo need refactorying*/
306      //Conserved Quantity is set by integrator and time is set by setTime
307 <    
307 >
308    }
309  
310 < } //end namespace oopse
310 >
311 >
312 > Vector3d Thermo::getBoxDipole() {
313 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
314 >    SimInfo::MoleculeIterator miter;
315 >    std::vector<Atom*>::iterator aiter;
316 >    Molecule* mol;
317 >    Atom* atom;
318 >    RealType charge;
319 >    RealType moment(0.0);
320 >    Vector3d ri(0.0);
321 >    Vector3d dipoleVector(0.0);
322 >    Vector3d nPos(0.0);
323 >    Vector3d pPos(0.0);
324 >    RealType nChg(0.0);
325 >    RealType pChg(0.0);
326 >    int nCount = 0;
327 >    int pCount = 0;
328 >
329 >    RealType chargeToC = 1.60217733e-19;
330 >    RealType angstromToM = 1.0e-10;    RealType debyeToCm = 3.33564095198e-30;
331 >
332 >    for (mol = info_->beginMolecule(miter); mol != NULL;
333 >         mol = info_->nextMolecule(miter)) {
334 >
335 >      for (atom = mol->beginAtom(aiter); atom != NULL;
336 >           atom = mol->nextAtom(aiter)) {
337 >
338 >        if (atom->isCharge() ) {
339 >          charge = 0.0;
340 >          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
341 >          if (data != NULL) {
342 >
343 >            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
344 >            charge *= chargeToC;
345 >
346 >            ri = atom->getPos();
347 >            currSnapshot->wrapVector(ri);
348 >            ri *= angstromToM;
349 >
350 >            if (charge < 0.0) {
351 >              nPos += ri;
352 >              nChg -= charge;
353 >              nCount++;
354 >            } else if (charge > 0.0) {
355 >              pPos += ri;
356 >              pChg += charge;
357 >              pCount++;
358 >            }
359 >          }
360 >        }
361 >
362 >        if (atom->isDipole() ) {
363 >          Vector3d u_i = atom->getElectroFrame().getColumn(2);
364 >          GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
365 >          if (data != NULL) {
366 >            moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
367 >
368 >            moment *= debyeToCm;
369 >            dipoleVector += u_i * moment;
370 >          }
371 >        }
372 >      }
373 >    }
374 >
375 >
376 > #ifdef IS_MPI
377 >    RealType pChg_global, nChg_global;
378 >    int pCount_global, nCount_global;
379 >    Vector3d pPos_global, nPos_global, dipVec_global;
380 >
381 >    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
382 >                  MPI_COMM_WORLD);
383 >    pChg = pChg_global;
384 >    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
385 >                  MPI_COMM_WORLD);
386 >    nChg = nChg_global;
387 >    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
388 >                  MPI_COMM_WORLD);
389 >    pCount = pCount_global;
390 >    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
391 >                  MPI_COMM_WORLD);
392 >    nCount = nCount_global;
393 >    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
394 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
395 >    pPos = pPos_global;
396 >    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
397 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
398 >    nPos = nPos_global;
399 >    MPI_Allreduce(dipoleVector.getArrayPointer(),
400 >                  dipVec_global.getArrayPointer(), 3,
401 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
402 >    dipoleVector = dipVec_global;
403 > #endif //is_mpi
404 >
405 >    // first load the accumulated dipole moment (if dipoles were present)
406 >    Vector3d boxDipole = dipoleVector;
407 >    // now include the dipole moment due to charges
408 >    // use the lesser of the positive and negative charge totals
409 >    RealType chg_value = nChg <= pChg ? nChg : pChg;
410 >
411 >    // find the average positions
412 >    if (pCount > 0 && nCount > 0 ) {
413 >      pPos /= pCount;
414 >      nPos /= nCount;
415 >    }
416 >
417 >    // dipole is from the negative to the positive (physics notation)
418 >    boxDipole += (pPos - nPos) * chg_value;
419 >
420 >    return boxDipole;
421 >  }
422 >
423 > Vector3d Thermo::getThermalHelfand() {
424 >    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
425 >    SimInfo::MoleculeIterator miter;
426 >    std::vector<Atom*>::iterator aiter;
427 >    Molecule* mol;
428 >    Atom* atom;
429 >    RealType mass;
430 >    Vector3d velocity;
431 >    Vector3d x_a;
432 >    RealType kinetic;
433 >    RealType potential;
434 >    RealType eatom;
435 >    RealType AvgE_a_ = 0;
436 >    Vector3d GKappa_t = V3Zero;
437 >    Vector3d ThermalHelfandMoment;
438 >
439 >    for (mol = info_->beginMolecule(miter); mol != NULL;
440 >         mol = info_->nextMolecule(miter)) {
441 >
442 >      for (atom = mol->beginAtom(aiter); atom != NULL;
443 >           atom = mol->nextAtom(aiter)) {
444 >
445 >        mass = atom->getMass();
446 >        velocity = atom->getVel();
447 >        kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
448 >                                   velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
449 >        potential =  atom->getParticlePot();
450 >        eatom += (kinetic + potential)/2.0;
451 >      }
452 >    }
453 >
454 >   int natoms = info_->getNGlobalAtoms();
455 > #ifdef IS_MPI
456 >
457 >    MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM,
458 >                  MPI_COMM_WORLD);
459 > #else
460 >    AvgE_a_ = eatom;
461 > #endif
462 >    AvgE_a_ = AvgE_a_/RealType(natoms);
463 >
464 >    for (mol = info_->beginMolecule(miter); mol != NULL;
465 >         mol = info_->nextMolecule(miter)) {
466 >
467 >      for (atom = mol->beginAtom(aiter); atom != NULL;
468 >           atom = mol->nextAtom(aiter)) {
469 >
470 >        /* We think that x_a is relative to the total box and should be a wrapped coordinate */
471 >        x_a = atom->getPos();
472 >        currSnapshot->wrapVector(x_a);
473 >        potential =  atom->getParticlePot();
474 >        velocity = atom->getVel();
475 >        kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
476 >                           velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
477 >        eatom += (kinetic + potential)/2.0
478 >        GKappa_t += x_a*(eatom-AvgE_a_);
479 >        }
480 >      }
481 > #ifdef IS_MPI
482 >     MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3,
483 >                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
484 > #else
485 >     ThermalHelfandMoment = GKappa_t;
486 > #endif
487 >     return ThermalHelfandMoment;
488 >
489 > }
490 >
491 >
492 >
493 > } //end namespace OpenMD

Comparing trunk/src/brains/Thermo.cpp (property svn:keywords):
Revision 541 by tim, Sun May 22 21:05:15 2005 UTC vs.
Revision 1666 by chuckv, Wed Dec 14 20:21:54 2011 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines