32 |
|
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
|
* research, please cite the appropriate papers when you publish your |
34 |
|
* work. Good starting points are: |
35 |
< |
* |
36 |
< |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
< |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
< |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
< |
* [4] Vardeman & Gezelter, in progress (2009). |
35 |
> |
* |
36 |
> |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
> |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
> |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008). |
39 |
> |
* [4] Vardeman & Gezelter, in progress (2009). |
40 |
|
*/ |
41 |
< |
|
41 |
> |
|
42 |
|
#include <math.h> |
43 |
|
#include <iostream> |
44 |
|
|
57 |
|
SimInfo::MoleculeIterator miter; |
58 |
|
std::vector<StuntDouble*>::iterator iiter; |
59 |
|
Molecule* mol; |
60 |
< |
StuntDouble* integrableObject; |
60 |
> |
StuntDouble* integrableObject; |
61 |
|
Vector3d vel; |
62 |
|
Vector3d angMom; |
63 |
|
Mat3x3d I; |
67 |
|
RealType mass; |
68 |
|
RealType kinetic = 0.0; |
69 |
|
RealType kinetic_global = 0.0; |
70 |
< |
|
70 |
> |
|
71 |
|
for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) { |
72 |
< |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
73 |
< |
integrableObject = mol->nextIntegrableObject(iiter)) { |
74 |
< |
|
75 |
< |
mass = integrableObject->getMass(); |
76 |
< |
vel = integrableObject->getVel(); |
77 |
< |
|
78 |
< |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
79 |
< |
|
80 |
< |
if (integrableObject->isDirectional()) { |
81 |
< |
angMom = integrableObject->getJ(); |
82 |
< |
I = integrableObject->getI(); |
72 |
> |
for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL; |
73 |
> |
integrableObject = mol->nextIntegrableObject(iiter)) { |
74 |
|
|
75 |
< |
if (integrableObject->isLinear()) { |
76 |
< |
i = integrableObject->linearAxis(); |
77 |
< |
j = (i + 1) % 3; |
78 |
< |
k = (i + 2) % 3; |
79 |
< |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
80 |
< |
} else { |
81 |
< |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
82 |
< |
+ angMom[2]*angMom[2]/I(2, 2); |
83 |
< |
} |
84 |
< |
} |
85 |
< |
|
75 |
> |
mass = integrableObject->getMass(); |
76 |
> |
vel = integrableObject->getVel(); |
77 |
> |
|
78 |
> |
kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]); |
79 |
> |
|
80 |
> |
if (integrableObject->isDirectional()) { |
81 |
> |
angMom = integrableObject->getJ(); |
82 |
> |
I = integrableObject->getI(); |
83 |
> |
|
84 |
> |
if (integrableObject->isLinear()) { |
85 |
> |
i = integrableObject->linearAxis(); |
86 |
> |
j = (i + 1) % 3; |
87 |
> |
k = (i + 2) % 3; |
88 |
> |
kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k); |
89 |
> |
} else { |
90 |
> |
kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1) |
91 |
> |
+ angMom[2]*angMom[2]/I(2, 2); |
92 |
> |
} |
93 |
> |
} |
94 |
> |
|
95 |
|
} |
96 |
|
} |
97 |
< |
|
97 |
> |
|
98 |
|
#ifdef IS_MPI |
99 |
|
|
100 |
|
MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM, |
138 |
|
} |
139 |
|
|
140 |
|
RealType Thermo::getTemperature() { |
141 |
< |
|
141 |
> |
|
142 |
|
RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb ); |
143 |
|
return temperature; |
144 |
|
} |
145 |
|
|
146 |
< |
RealType Thermo::getVolume() { |
146 |
> |
RealType Thermo::getVolume() { |
147 |
|
Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
148 |
|
return curSnapshot->getVolume(); |
149 |
|
} |
167 |
|
|
168 |
|
// Relies on the calculation of the full molecular pressure tensor |
169 |
|
|
170 |
< |
|
170 |
> |
|
171 |
|
Mat3x3d tensor; |
172 |
|
RealType pressure; |
173 |
|
|
189 |
|
SimInfo::MoleculeIterator i; |
190 |
|
std::vector<StuntDouble*>::iterator j; |
191 |
|
Molecule* mol; |
192 |
< |
StuntDouble* integrableObject; |
192 |
> |
StuntDouble* integrableObject; |
193 |
|
for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) { |
194 |
< |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
195 |
< |
integrableObject = mol->nextIntegrableObject(j)) { |
194 |
> |
for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL; |
195 |
> |
integrableObject = mol->nextIntegrableObject(j)) { |
196 |
|
|
197 |
< |
RealType mass = integrableObject->getMass(); |
198 |
< |
Vector3d vcom = integrableObject->getVel(); |
199 |
< |
p_local += mass * outProduct(vcom, vcom); |
197 |
> |
RealType mass = integrableObject->getMass(); |
198 |
> |
Vector3d vcom = integrableObject->getVel(); |
199 |
> |
p_local += mass * outProduct(vcom, vcom); |
200 |
|
} |
201 |
|
} |
202 |
< |
|
202 |
> |
|
203 |
|
#ifdef IS_MPI |
204 |
|
MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
205 |
|
#else |
211 |
|
Mat3x3d tau = curSnapshot->statData.getTau(); |
212 |
|
|
213 |
|
pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume; |
214 |
< |
|
214 |
> |
|
215 |
|
return pressureTensor; |
216 |
|
} |
217 |
|
|
219 |
|
void Thermo::saveStat(){ |
220 |
|
Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot(); |
221 |
|
Stats& stat = currSnapshot->statData; |
222 |
< |
|
222 |
> |
|
223 |
|
stat[Stats::KINETIC_ENERGY] = getKinetic(); |
224 |
|
stat[Stats::POTENTIAL_ENERGY] = getPotential(); |
225 |
|
stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ; |
226 |
|
stat[Stats::TEMPERATURE] = getTemperature(); |
227 |
|
stat[Stats::PRESSURE] = getPressure(); |
228 |
< |
stat[Stats::VOLUME] = getVolume(); |
228 |
> |
stat[Stats::VOLUME] = getVolume(); |
229 |
|
|
230 |
|
Mat3x3d tensor =getPressureTensor(); |
231 |
< |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
232 |
< |
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
233 |
< |
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
234 |
< |
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
235 |
< |
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
236 |
< |
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
237 |
< |
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
238 |
< |
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
239 |
< |
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
231 |
> |
stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0); |
232 |
> |
stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1); |
233 |
> |
stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2); |
234 |
> |
stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0); |
235 |
> |
stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1); |
236 |
> |
stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2); |
237 |
> |
stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0); |
238 |
> |
stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1); |
239 |
> |
stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2); |
240 |
|
Vector3d GKappa_t = getThermalHelfand(); |
241 |
|
stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x(); |
242 |
|
stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y(); |
244 |
|
|
245 |
|
Globals* simParams = info_->getSimParams(); |
246 |
|
|
247 |
< |
if (simParams->haveTaggedAtomPair() && |
247 |
> |
if (simParams->haveTaggedAtomPair() && |
248 |
|
simParams->havePrintTaggedPairDistance()) { |
249 |
|
if ( simParams->getPrintTaggedPairDistance()) { |
250 |
< |
|
250 |
> |
|
251 |
|
std::pair<int, int> tap = simParams->getTaggedAtomPair(); |
252 |
|
Vector3d pos1, pos2, rab; |
253 |
|
|
254 |
< |
#ifdef IS_MPI |
254 |
> |
#ifdef IS_MPI |
255 |
|
std::cerr << "tap = " << tap.first << " " << tap.second << std::endl; |
256 |
|
|
257 |
< |
int mol1 = info_->getGlobalMolMembership(tap.first); |
258 |
< |
int mol2 = info_->getGlobalMolMembership(tap.second); |
257 |
> |
int mol1 = info_->getGlobalMolMembership(tap.first); |
258 |
> |
int mol2 = info_->getGlobalMolMembership(tap.second); |
259 |
|
std::cerr << "mols = " << mol1 << " " << mol2 << std::endl; |
260 |
|
|
261 |
|
int proc1 = info_->getMolToProc(mol1); |
263 |
|
|
264 |
|
std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl; |
265 |
|
|
266 |
< |
RealType data[3]; |
266 |
> |
RealType data[3]; |
267 |
|
if (proc1 == worldRank) { |
268 |
|
StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first); |
269 |
|
std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl; |
270 |
|
pos1 = sd1->getPos(); |
271 |
|
data[0] = pos1.x(); |
272 |
|
data[1] = pos1.y(); |
273 |
< |
data[2] = pos1.z(); |
273 |
> |
data[2] = pos1.z(); |
274 |
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
275 |
|
} else { |
276 |
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD); |
284 |
|
pos2 = sd2->getPos(); |
285 |
|
data[0] = pos2.x(); |
286 |
|
data[1] = pos2.y(); |
287 |
< |
data[2] = pos2.z(); |
287 |
> |
data[2] = pos2.z(); |
288 |
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
289 |
|
} else { |
290 |
|
MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD); |
295 |
|
StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second); |
296 |
|
pos1 = at1->getPos(); |
297 |
|
pos2 = at2->getPos(); |
298 |
< |
#endif |
298 |
> |
#endif |
299 |
|
rab = pos2 - pos1; |
300 |
|
currSnapshot->wrapVector(rab); |
301 |
|
stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length(); |
302 |
|
} |
303 |
|
} |
304 |
< |
|
304 |
> |
|
305 |
|
/**@todo need refactorying*/ |
306 |
|
//Conserved Quantity is set by integrator and time is set by setTime |
307 |
< |
|
307 |
> |
|
308 |
|
} |
309 |
|
|
310 |
|
|
435 |
|
RealType AvgE_a_ = 0; |
436 |
|
Vector3d GKappa_t = V3Zero; |
437 |
|
Vector3d ThermalHelfandMoment; |
438 |
< |
|
438 |
> |
|
439 |
|
for (mol = info_->beginMolecule(miter); mol != NULL; |
440 |
|
mol = info_->nextMolecule(miter)) { |
441 |
|
|
444 |
|
|
445 |
|
mass = atom->getMass(); |
446 |
|
velocity = atom->getVel(); |
447 |
< |
kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + |
447 |
> |
kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + |
448 |
|
velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; |
449 |
|
potential = atom->getParticlePot(); |
450 |
|
eatom += (kinetic + potential)/2.0; |
453 |
|
|
454 |
|
int natoms = info_->getNGlobalAtoms(); |
455 |
|
#ifdef IS_MPI |
456 |
< |
|
456 |
> |
|
457 |
|
MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM, |
458 |
|
MPI_COMM_WORLD); |
459 |
< |
#else |
459 |
> |
#else |
460 |
|
AvgE_a_ = eatom; |
461 |
|
#endif |
462 |
|
AvgE_a_ = AvgE_a_/RealType(natoms); |
463 |
< |
|
463 |
> |
|
464 |
|
for (mol = info_->beginMolecule(miter); mol != NULL; |
465 |
|
mol = info_->nextMolecule(miter)) { |
466 |
< |
|
466 |
> |
|
467 |
|
for (atom = mol->beginAtom(aiter); atom != NULL; |
468 |
|
atom = mol->nextAtom(aiter)) { |
469 |
< |
|
469 |
> |
|
470 |
|
/* We think that x_a is relative to the total box and should be a wrapped coordinate */ |
471 |
|
x_a = atom->getPos(); |
472 |
|
currSnapshot->wrapVector(x_a); |
473 |
|
potential = atom->getParticlePot(); |
474 |
< |
|
475 |
< |
GKappa_t += x_a*(potential-AvgE_a_); |
474 |
> |
velocity = atom->getVel(); |
475 |
> |
kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] + |
476 |
> |
velocity[2]*velocity[2]) / PhysicalConstants::energyConvert; |
477 |
> |
eatom += (kinetic + potential)/2.0; |
478 |
> |
GKappa_t += x_a*(eatom-AvgE_a_); |
479 |
|
} |
480 |
|
} |
481 |
|
#ifdef IS_MPI |
482 |
|
MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3, |
483 |
|
MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD); |
484 |
< |
#else |
484 |
> |
#else |
485 |
|
ThermalHelfandMoment = GKappa_t; |
486 |
< |
#endif |
486 |
> |
#endif |
487 |
|
return ThermalHelfandMoment; |
488 |
< |
|
488 |
> |
|
489 |
|
} |
490 |
|
|
491 |
|
|