ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
(Generate patch)

Comparing trunk/src/brains/Thermo.cpp (file contents):
Revision 1666 by chuckv, Wed Dec 14 20:21:54 2011 UTC vs.
Revision 1782 by gezelter, Wed Aug 22 02:28:28 2012 UTC

# Line 32 | Line 32
32   * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33   * research, please cite the appropriate papers when you publish your
34   * work.  Good starting points are:
35 < *
36 < * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 < * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 < * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 < * [4]  Vardeman & Gezelter, in progress (2009).
35 > *                                                                      
36 > * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 > * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 > * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).          
39 > * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 > * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42 <
42 >
43   #include <math.h>
44   #include <iostream>
45  
# Line 50 | Line 51
51   #include "primitives/Molecule.hpp"
52   #include "utils/simError.h"
53   #include "utils/PhysicalConstants.hpp"
54 + #include "types/FixedChargeAdapter.hpp"
55 + #include "types/FluctuatingChargeAdapter.hpp"
56 + #include "types/MultipoleAdapter.hpp"
57 + #ifdef HAVE_QHULL
58 + #include "math/ConvexHull.hpp"
59 + #include "math/AlphaHull.hpp"
60 + #endif
61  
62 + using namespace std;
63   namespace OpenMD {
64  
65 <  RealType Thermo::getKinetic() {
66 <    SimInfo::MoleculeIterator miter;
58 <    std::vector<StuntDouble*>::iterator iiter;
59 <    Molecule* mol;
60 <    StuntDouble* integrableObject;
61 <    Vector3d vel;
62 <    Vector3d angMom;
63 <    Mat3x3d I;
64 <    int i;
65 <    int j;
66 <    int k;
67 <    RealType mass;
68 <    RealType kinetic = 0.0;
69 <    RealType kinetic_global = 0.0;
65 >  RealType Thermo::getTranslationalKinetic() {
66 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67  
68 <    for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
69 <      for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
70 <     integrableObject = mol->nextIntegrableObject(iiter)) {
71 <
72 <  mass = integrableObject->getMass();
73 <  vel = integrableObject->getVel();
74 <
75 <  kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
76 <
77 <  if (integrableObject->isDirectional()) {
78 <    angMom = integrableObject->getJ();
79 <    I = integrableObject->getI();
80 <
81 <    if (integrableObject->isLinear()) {
82 <      i = integrableObject->linearAxis();
83 <      j = (i + 1) % 3;
84 <      k = (i + 2) % 3;
85 <      kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
86 <    } else {
87 <      kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
88 <        + angMom[2]*angMom[2]/I(2, 2);
68 >    if (!snap->hasTranslationalKineticEnergy) {
69 >      SimInfo::MoleculeIterator miter;
70 >      vector<StuntDouble*>::iterator iiter;
71 >      Molecule* mol;
72 >      StuntDouble* sd;    
73 >      Vector3d vel;
74 >      RealType mass;
75 >      RealType kinetic(0.0);
76 >      
77 >      for (mol = info_->beginMolecule(miter); mol != NULL;
78 >           mol = info_->nextMolecule(miter)) {
79 >        
80 >        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81 >             sd = mol->nextIntegrableObject(iiter)) {
82 >          
83 >          mass = sd->getMass();
84 >          vel = sd->getVel();
85 >          
86 >          kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87 >          
88 >        }
89 >      }
90 >      
91 > #ifdef IS_MPI
92 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93 >                                MPI::SUM);
94 > #endif
95 >      
96 >      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97 >      
98 >      
99 >      snap->setTranslationalKineticEnergy(kinetic);
100      }
101 +    return snap->getTranslationalKineticEnergy();
102    }
103  
104 +  RealType Thermo::getRotationalKinetic() {
105 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106 +
107 +    if (!snap->hasRotationalKineticEnergy) {
108 +      SimInfo::MoleculeIterator miter;
109 +      vector<StuntDouble*>::iterator iiter;
110 +      Molecule* mol;
111 +      StuntDouble* sd;    
112 +      Vector3d angMom;
113 +      Mat3x3d I;
114 +      int i, j, k;
115 +      RealType kinetic(0.0);
116 +      
117 +      for (mol = info_->beginMolecule(miter); mol != NULL;
118 +           mol = info_->nextMolecule(miter)) {
119 +        
120 +        for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121 +             sd = mol->nextIntegrableObject(iiter)) {
122 +          
123 +          if (sd->isDirectional()) {
124 +            angMom = sd->getJ();
125 +            I = sd->getI();
126 +            
127 +            if (sd->isLinear()) {
128 +              i = sd->linearAxis();
129 +              j = (i + 1) % 3;
130 +              k = (i + 2) % 3;
131 +              kinetic += angMom[j] * angMom[j] / I(j, j)
132 +                + angMom[k] * angMom[k] / I(k, k);
133 +            } else {                        
134 +              kinetic += angMom[0]*angMom[0]/I(0, 0)
135 +                + angMom[1]*angMom[1]/I(1, 1)
136 +                + angMom[2]*angMom[2]/I(2, 2);
137 +            }
138 +          }          
139 +        }
140        }
141 +      
142 + #ifdef IS_MPI
143 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144 +                                MPI::SUM);
145 + #endif
146 +      
147 +      kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148 +          
149 +      snap->setRotationalKineticEnergy(kinetic);
150      }
151 +    return snap->getRotationalKineticEnergy();
152 +  }
153  
154 < #ifdef IS_MPI
154 >      
155  
156 <    MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
157 <                  MPI_COMM_WORLD);
102 <    kinetic = kinetic_global;
156 >  RealType Thermo::getKinetic() {
157 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158  
159 < #endif //is_mpi
160 <
161 <    kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
162 <
163 <    return kinetic;
159 >    if (!snap->hasKineticEnergy) {
160 >      RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161 >      snap->setKineticEnergy(ke);
162 >    }
163 >    return snap->getKineticEnergy();
164    }
165  
166    RealType Thermo::getPotential() {
112    RealType potential = 0.0;
113    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114    RealType shortRangePot_local =  curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
167  
168 <    // Get total potential for entire system from MPI.
168 >    // ForceManager computes the potential and stores it in the
169 >    // Snapshot.  All we have to do is report it.
170  
171 < #ifdef IS_MPI
171 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172 >    return snap->getPotentialEnergy();
173 >  }
174  
175 <    MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 <                  MPI_COMM_WORLD);
122 <    potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
175 >  RealType Thermo::getTotalEnergy() {
176  
177 < #else
177 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178  
179 <    potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
179 >    if (!snap->hasTotalEnergy) {
180 >      snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181 >    }
182  
183 < #endif // is_mpi
129 <
130 <    return potential;
183 >    return snap->getTotalEnergy();
184    }
185  
186 <  RealType Thermo::getTotalE() {
134 <    RealType total;
186 >  RealType Thermo::getTemperature() {
187  
188 <    total = this->getKinetic() + this->getPotential();
137 <    return total;
138 <  }
188 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189  
190 <  RealType Thermo::getTemperature() {
190 >    if (!snap->hasTemperature) {
191  
192 <    RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
193 <    return temperature;
144 <  }
192 >      RealType temperature = ( 2.0 * this->getKinetic() )
193 >        / (info_->getNdf()* PhysicalConstants::kb );
194  
195 <  RealType Thermo::getVolume() {
196 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
197 <    return curSnapshot->getVolume();
195 >      snap->setTemperature(temperature);
196 >    }
197 >    
198 >    return snap->getTemperature();
199    }
200  
201 <  RealType Thermo::getPressure() {
201 >  RealType Thermo::getElectronicTemperature() {
202 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203  
204 <    // Relies on the calculation of the full molecular pressure tensor
204 >    if (!snap->hasElectronicTemperature) {
205 >      
206 >      SimInfo::MoleculeIterator miter;
207 >      vector<Atom*>::iterator iiter;
208 >      Molecule* mol;
209 >      Atom* atom;    
210 >      RealType cvel;
211 >      RealType cmass;
212 >      RealType kinetic(0.0);
213 >      RealType eTemp;
214 >      
215 >      for (mol = info_->beginMolecule(miter); mol != NULL;
216 >           mol = info_->nextMolecule(miter)) {
217 >        
218 >        for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219 >             atom = mol->nextFluctuatingCharge(iiter)) {
220 >          
221 >          cmass = atom->getChargeMass();
222 >          cvel = atom->getFlucQVel();
223 >          
224 >          kinetic += cmass * cvel * cvel;
225 >          
226 >        }
227 >      }
228 >    
229 > #ifdef IS_MPI
230 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231 >                                MPI::SUM);
232 > #endif
233  
234 +      kinetic *= 0.5;
235 +      eTemp =  (2.0 * kinetic) /
236 +        (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237 +    
238 +      snap->setElectronicTemperature(eTemp);
239 +    }
240  
241 <    Mat3x3d tensor;
242 <    RealType pressure;
241 >    return snap->getElectronicTemperature();
242 >  }
243  
159    tensor = getPressureTensor();
244  
245 <    pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
246 <
247 <    return pressure;
245 >  RealType Thermo::getVolume() {
246 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247 >    return snap->getVolume();
248    }
249  
250 <  RealType Thermo::getPressure(int direction) {
250 >  RealType Thermo::getPressure() {
251 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252  
253 <    // Relies on the calculation of the full molecular pressure tensor
254 <
255 <
256 <    Mat3x3d tensor;
257 <    RealType pressure;
258 <
259 <    tensor = getPressureTensor();
260 <
261 <    pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
262 <
263 <    return pressure;
253 >    if (!snap->hasPressure) {
254 >      // Relies on the calculation of the full molecular pressure tensor
255 >      
256 >      Mat3x3d tensor;
257 >      RealType pressure;
258 >      
259 >      tensor = getPressureTensor();
260 >      
261 >      pressure = PhysicalConstants::pressureConvert *
262 >        (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263 >      
264 >      snap->setPressure(pressure);
265 >    }
266 >    
267 >    return snap->getPressure();    
268    }
269  
270    Mat3x3d Thermo::getPressureTensor() {
271      // returns pressure tensor in units amu*fs^-2*Ang^-1
272      // routine derived via viral theorem description in:
273      // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274 <    Mat3x3d pressureTensor;
186 <    Mat3x3d p_local(0.0);
187 <    Mat3x3d p_global(0.0);
274 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275  
276 <    SimInfo::MoleculeIterator i;
190 <    std::vector<StuntDouble*>::iterator j;
191 <    Molecule* mol;
192 <    StuntDouble* integrableObject;
193 <    for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 <      for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195 <     integrableObject = mol->nextIntegrableObject(j)) {
276 >    if (!snap->hasPressureTensor) {
277  
278 <  RealType mass = integrableObject->getMass();
279 <  Vector3d vcom = integrableObject->getVel();
280 <  p_local += mass * outProduct(vcom, vcom);
278 >      Mat3x3d pressureTensor;
279 >      Mat3x3d p_tens(0.0);
280 >      RealType mass;
281 >      Vector3d vcom;
282 >      
283 >      SimInfo::MoleculeIterator i;
284 >      vector<StuntDouble*>::iterator j;
285 >      Molecule* mol;
286 >      StuntDouble* sd;    
287 >      for (mol = info_->beginMolecule(i); mol != NULL;
288 >           mol = info_->nextMolecule(i)) {
289 >        
290 >        for (sd = mol->beginIntegrableObject(j); sd != NULL;
291 >             sd = mol->nextIntegrableObject(j)) {
292 >          
293 >          mass = sd->getMass();
294 >          vcom = sd->getVel();
295 >          p_tens += mass * outProduct(vcom, vcom);        
296 >        }
297        }
298 +      
299 + #ifdef IS_MPI
300 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301 +                                MPI::REALTYPE, MPI::SUM);
302 + #endif
303 +      
304 +      RealType volume = this->getVolume();
305 +      Mat3x3d stressTensor = snap->getStressTensor();
306 +      
307 +      pressureTensor =  (p_tens +
308 +                         PhysicalConstants::energyConvert * stressTensor)/volume;
309 +      
310 +      snap->setPressureTensor(pressureTensor);
311      }
312 +    return snap->getPressureTensor();
313 +  }
314  
315 +
316 +
317 +
318 +  Vector3d Thermo::getSystemDipole() {
319 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 +
321 +    if (!snap->hasSystemDipole) {
322 +      SimInfo::MoleculeIterator miter;
323 +      vector<Atom*>::iterator aiter;
324 +      Molecule* mol;
325 +      Atom* atom;
326 +      RealType charge;
327 +      RealType moment(0.0);
328 +      Vector3d ri(0.0);
329 +      Vector3d dipoleVector(0.0);
330 +      Vector3d nPos(0.0);
331 +      Vector3d pPos(0.0);
332 +      RealType nChg(0.0);
333 +      RealType pChg(0.0);
334 +      int nCount = 0;
335 +      int pCount = 0;
336 +      
337 +      RealType chargeToC = 1.60217733e-19;
338 +      RealType angstromToM = 1.0e-10;
339 +      RealType debyeToCm = 3.33564095198e-30;
340 +      
341 +      for (mol = info_->beginMolecule(miter); mol != NULL;
342 +           mol = info_->nextMolecule(miter)) {
343 +        
344 +        for (atom = mol->beginAtom(aiter); atom != NULL;
345 +             atom = mol->nextAtom(aiter)) {
346 +          
347 +          charge = 0.0;
348 +          
349 +          FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
350 +          if ( fca.isFixedCharge() ) {
351 +            charge = fca.getCharge();
352 +          }
353 +          
354 +          FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
355 +          if ( fqa.isFluctuatingCharge() ) {
356 +            charge += atom->getFlucQPos();
357 +          }
358 +          
359 +          charge *= chargeToC;
360 +          
361 +          ri = atom->getPos();
362 +          snap->wrapVector(ri);
363 +          ri *= angstromToM;
364 +          
365 +          if (charge < 0.0) {
366 +            nPos += ri;
367 +            nChg -= charge;
368 +            nCount++;
369 +          } else if (charge > 0.0) {
370 +            pPos += ri;
371 +            pChg += charge;
372 +            pCount++;
373 +          }
374 +          
375 +          MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
376 +          if (ma.isDipole() ) {
377 +            Vector3d u_i = atom->getElectroFrame().getColumn(2);
378 +            moment = ma.getDipoleMoment();
379 +            moment *= debyeToCm;
380 +            dipoleVector += u_i * moment;
381 +          }
382 +        }
383 +      }
384 +      
385 +      
386   #ifdef IS_MPI
387 <    MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
388 < #else
389 <    p_global = p_local;
390 < #endif // is_mpi
387 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
388 >                                MPI::SUM);
389 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
390 >                                MPI::SUM);
391  
392 <    RealType volume = this->getVolume();
393 <    Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
394 <    Mat3x3d tau = curSnapshot->statData.getTau();
392 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
393 >                                MPI::SUM);
394 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
395 >                                MPI::SUM);
396  
397 <    pressureTensor =  (p_global + PhysicalConstants::energyConvert* tau)/volume;
397 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
398 >                                MPI::REALTYPE, MPI::SUM);
399 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
400 >                                MPI::REALTYPE, MPI::SUM);
401  
402 <    return pressureTensor;
402 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
403 >                                3, MPI::REALTYPE, MPI::SUM);
404 > #endif
405 >      
406 >      // first load the accumulated dipole moment (if dipoles were present)
407 >      Vector3d boxDipole = dipoleVector;
408 >      // now include the dipole moment due to charges
409 >      // use the lesser of the positive and negative charge totals
410 >      RealType chg_value = nChg <= pChg ? nChg : pChg;
411 >      
412 >      // find the average positions
413 >      if (pCount > 0 && nCount > 0 ) {
414 >        pPos /= pCount;
415 >        nPos /= nCount;
416 >      }
417 >      
418 >      // dipole is from the negative to the positive (physics notation)
419 >      boxDipole += (pPos - nPos) * chg_value;
420 >      snap->setSystemDipole(boxDipole);
421 >    }
422 >
423 >    return snap->getSystemDipole();
424    }
425  
426 <
427 <  void Thermo::saveStat(){
426 >  // Returns the Heat Flux Vector for the system
427 >  Vector3d Thermo::getHeatFlux(){
428      Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
429 <    Stats& stat = currSnapshot->statData;
429 >    SimInfo::MoleculeIterator miter;
430 >    vector<StuntDouble*>::iterator iiter;
431 >    Molecule* mol;
432 >    StuntDouble* sd;    
433 >    RigidBody::AtomIterator ai;
434 >    Atom* atom;      
435 >    Vector3d vel;
436 >    Vector3d angMom;
437 >    Mat3x3d I;
438 >    int i;
439 >    int j;
440 >    int k;
441 >    RealType mass;
442  
443 <    stat[Stats::KINETIC_ENERGY] = getKinetic();
444 <    stat[Stats::POTENTIAL_ENERGY] = getPotential();
445 <    stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY]  + stat[Stats::POTENTIAL_ENERGY] ;
446 <    stat[Stats::TEMPERATURE] = getTemperature();
447 <    stat[Stats::PRESSURE] = getPressure();
448 <    stat[Stats::VOLUME] = getVolume();
443 >    Vector3d x_a;
444 >    RealType kinetic;
445 >    RealType potential;
446 >    RealType eatom;
447 >    RealType AvgE_a_ = 0;
448 >    // Convective portion of the heat flux
449 >    Vector3d heatFluxJc = V3Zero;
450  
451 <    Mat3x3d tensor =getPressureTensor();
452 <    stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
453 <    stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
454 <    stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
455 <    stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
456 <    stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
457 <    stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
458 <    stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
459 <    stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
460 <    stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
461 <    Vector3d GKappa_t = getThermalHelfand();
462 <    stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x();
463 <    stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y();
464 <    stat[Stats::THERMAL_HELFANDMOMENT_Z] = GKappa_t.z();
451 >    /* Calculate convective portion of the heat flux */
452 >    for (mol = info_->beginMolecule(miter); mol != NULL;
453 >         mol = info_->nextMolecule(miter)) {
454 >      
455 >      for (sd = mol->beginIntegrableObject(iiter);
456 >           sd != NULL;
457 >           sd = mol->nextIntegrableObject(iiter)) {
458 >        
459 >        mass = sd->getMass();
460 >        vel = sd->getVel();
461 >
462 >        kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
463 >        
464 >        if (sd->isDirectional()) {
465 >          angMom = sd->getJ();
466 >          I = sd->getI();
467 >
468 >          if (sd->isLinear()) {
469 >            i = sd->linearAxis();
470 >            j = (i + 1) % 3;
471 >            k = (i + 2) % 3;
472 >            kinetic += angMom[j] * angMom[j] / I(j, j)
473 >              + angMom[k] * angMom[k] / I(k, k);
474 >          } else {                        
475 >            kinetic += angMom[0]*angMom[0]/I(0, 0)
476 >              + angMom[1]*angMom[1]/I(1, 1)
477 >              + angMom[2]*angMom[2]/I(2, 2);
478 >          }
479 >        }
480 >
481 >        potential = 0.0;
482 >
483 >        if (sd->isRigidBody()) {
484 >          RigidBody* rb = dynamic_cast<RigidBody*>(sd);
485 >          for (atom = rb->beginAtom(ai); atom != NULL;
486 >               atom = rb->nextAtom(ai)) {
487 >            potential +=  atom->getParticlePot();
488 >          }          
489 >        } else {
490 >          potential = sd->getParticlePot();
491 >        }
492 >
493 >        potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
494 >        // The potential may not be a 1/2 factor
495 >        eatom = (kinetic + potential)/2.0;  // amu A^2/fs^2
496 >        heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
497 >        heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
498 >        heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
499 >      }
500 >    }
501 >
502 >    /* The J_v vector is reduced in the forceManager so everyone has
503 >     *  the global Jv. Jc is computed over the local atoms and must be
504 >     *  reduced among all processors.
505 >     */
506 > #ifdef IS_MPI
507 >    MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
508 >                              MPI::SUM);
509 > #endif
510 >    
511 >    // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
512 >
513 >    Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
514 >      PhysicalConstants::energyConvert;
515 >        
516 >    // Correct for the fact the flux is 1/V (Jc + Jv)
517 >    return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
518 >  }
519 >
520 >
521 >  Vector3d Thermo::getComVel(){
522 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
523 >
524 >    if (!snap->hasCOMvel) {
525 >
526 >      SimInfo::MoleculeIterator i;
527 >      Molecule* mol;
528 >      
529 >      Vector3d comVel(0.0);
530 >      RealType totalMass(0.0);
531 >      
532 >      for (mol = info_->beginMolecule(i); mol != NULL;
533 >           mol = info_->nextMolecule(i)) {
534 >        RealType mass = mol->getMass();
535 >        totalMass += mass;
536 >        comVel += mass * mol->getComVel();
537 >      }  
538 >      
539 > #ifdef IS_MPI
540 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
541 >                                MPI::SUM);
542 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
543 >                                MPI::REALTYPE, MPI::SUM);
544 > #endif
545 >      
546 >      comVel /= totalMass;
547 >      snap->setCOMvel(comVel);
548 >    }
549 >    return snap->getCOMvel();
550 >  }
551  
552 <    Globals* simParams = info_->getSimParams();
552 >  Vector3d Thermo::getCom(){
553 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
554  
555 <    if (simParams->haveTaggedAtomPair() &&
556 <        simParams->havePrintTaggedPairDistance()) {
557 <      if ( simParams->getPrintTaggedPairDistance()) {
555 >    if (!snap->hasCOM) {
556 >      
557 >      SimInfo::MoleculeIterator i;
558 >      Molecule* mol;
559 >      
560 >      Vector3d com(0.0);
561 >      RealType totalMass(0.0);
562 >      
563 >      for (mol = info_->beginMolecule(i); mol != NULL;
564 >           mol = info_->nextMolecule(i)) {
565 >        RealType mass = mol->getMass();
566 >        totalMass += mass;
567 >        com += mass * mol->getCom();
568 >      }  
569 >      
570 > #ifdef IS_MPI
571 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
572 >                                MPI::SUM);
573 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
574 >                                MPI::REALTYPE, MPI::SUM);
575 > #endif
576 >      
577 >      com /= totalMass;
578 >      snap->setCOM(com);
579 >    }
580 >    return snap->getCOM();
581 >  }        
582  
583 <        std::pair<int, int> tap = simParams->getTaggedAtomPair();
584 <        Vector3d pos1, pos2, rab;
583 >  /**
584 >   * Returns center of mass and center of mass velocity in one
585 >   * function call.
586 >   */  
587 >  void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
588 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
589  
590 +    if (!(snap->hasCOM && snap->hasCOMvel)) {
591 +
592 +      SimInfo::MoleculeIterator i;
593 +      Molecule* mol;
594 +      
595 +      RealType totalMass(0.0);
596 +      
597 +      com = 0.0;
598 +      comVel = 0.0;
599 +      
600 +      for (mol = info_->beginMolecule(i); mol != NULL;
601 +           mol = info_->nextMolecule(i)) {
602 +        RealType mass = mol->getMass();
603 +        totalMass += mass;
604 +        com += mass * mol->getCom();
605 +        comVel += mass * mol->getComVel();          
606 +      }  
607 +      
608   #ifdef IS_MPI
609 <        std::cerr << "tap = " << tap.first << "  " << tap.second << std::endl;
609 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
610 >                                MPI::SUM);
611 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
612 >                                MPI::REALTYPE, MPI::SUM);
613 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
614 >                                MPI::REALTYPE, MPI::SUM);
615 > #endif
616 >      
617 >      com /= totalMass;
618 >      comVel /= totalMass;
619 >      snap->setCOM(com);
620 >      snap->setCOMvel(comVel);
621 >    }    
622 >    com = snap->getCOM();
623 >    comVel = snap->getCOMvel();
624 >    return;
625 >  }        
626 >  
627 >  /**
628 >   * Return intertia tensor for entire system and angular momentum
629 >   * Vector.
630 >   *
631 >   *
632 >   *
633 >   *    [  Ixx -Ixy  -Ixz ]
634 >   * I =| -Iyx  Iyy  -Iyz |
635 >   *    [ -Izx -Iyz   Izz ]
636 >   */
637 >  void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
638 >                                Vector3d &angularMomentum){
639  
640 <  int mol1 = info_->getGlobalMolMembership(tap.first);
641 <  int mol2 = info_->getGlobalMolMembership(tap.second);
642 <        std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
640 >    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
641 >    
642 >    if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
643 >      
644 >      RealType xx = 0.0;
645 >      RealType yy = 0.0;
646 >      RealType zz = 0.0;
647 >      RealType xy = 0.0;
648 >      RealType xz = 0.0;
649 >      RealType yz = 0.0;
650 >      Vector3d com(0.0);
651 >      Vector3d comVel(0.0);
652 >      
653 >      getComAll(com, comVel);
654 >      
655 >      SimInfo::MoleculeIterator i;
656 >      Molecule* mol;
657 >      
658 >      Vector3d thisq(0.0);
659 >      Vector3d thisv(0.0);
660 >      
661 >      RealType thisMass = 0.0;
662 >      
663 >      for (mol = info_->beginMolecule(i); mol != NULL;
664 >           mol = info_->nextMolecule(i)) {
665 >        
666 >        thisq = mol->getCom()-com;
667 >        thisv = mol->getComVel()-comVel;
668 >        thisMass = mol->getMass();
669 >        // Compute moment of intertia coefficients.
670 >        xx += thisq[0]*thisq[0]*thisMass;
671 >        yy += thisq[1]*thisq[1]*thisMass;
672 >        zz += thisq[2]*thisq[2]*thisMass;
673 >        
674 >        // compute products of intertia
675 >        xy += thisq[0]*thisq[1]*thisMass;
676 >        xz += thisq[0]*thisq[2]*thisMass;
677 >        yz += thisq[1]*thisq[2]*thisMass;
678 >        
679 >        angularMomentum += cross( thisq, thisv ) * thisMass;            
680 >      }
681 >      
682 >      inertiaTensor(0,0) = yy + zz;
683 >      inertiaTensor(0,1) = -xy;
684 >      inertiaTensor(0,2) = -xz;
685 >      inertiaTensor(1,0) = -xy;
686 >      inertiaTensor(1,1) = xx + zz;
687 >      inertiaTensor(1,2) = -yz;
688 >      inertiaTensor(2,0) = -xz;
689 >      inertiaTensor(2,1) = -yz;
690 >      inertiaTensor(2,2) = xx + yy;
691 >      
692 > #ifdef IS_MPI
693 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
694 >                                9, MPI::REALTYPE, MPI::SUM);
695 >      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
696 >                                angularMomentum.getArrayPointer(), 3,
697 >                                MPI::REALTYPE, MPI::SUM);
698 > #endif
699 >      
700 >      snap->setCOMw(angularMomentum);
701 >      snap->setInertiaTensor(inertiaTensor);
702 >    }
703 >    
704 >    angularMomentum = snap->getCOMw();
705 >    inertiaTensor = snap->getInertiaTensor();
706 >    
707 >    return;
708 >  }
709  
710 +  // Returns the angular momentum of the system
711 +  Vector3d Thermo::getAngularMomentum(){
712 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
713 +    
714 +    if (!snap->hasCOMw) {
715 +      
716 +      Vector3d com(0.0);
717 +      Vector3d comVel(0.0);
718 +      Vector3d angularMomentum(0.0);
719 +      
720 +      getComAll(com, comVel);
721 +      
722 +      SimInfo::MoleculeIterator i;
723 +      Molecule* mol;
724 +      
725 +      Vector3d thisr(0.0);
726 +      Vector3d thisp(0.0);
727 +      
728 +      RealType thisMass;
729 +      
730 +      for (mol = info_->beginMolecule(i); mol != NULL;
731 +           mol = info_->nextMolecule(i)) {
732 +        thisMass = mol->getMass();
733 +        thisr = mol->getCom() - com;
734 +        thisp = (mol->getComVel() - comVel) * thisMass;
735 +        
736 +        angularMomentum += cross( thisr, thisp );      
737 +      }  
738 +      
739 + #ifdef IS_MPI
740 +      MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
741 +                                angularMomentum.getArrayPointer(), 3,
742 +                                MPI::REALTYPE, MPI::SUM);
743 + #endif
744 +      
745 +      snap->setCOMw(angularMomentum);
746 +    }
747 +    
748 +    return snap->getCOMw();
749 +  }
750 +  
751 +  
752 +  /**
753 +   * Returns the Volume of the system based on a ellipsoid with
754 +   * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
755 +   * where R_i are related to the principle inertia moments
756 +   *  R_i = sqrt(C*I_i/N), this reduces to
757 +   *  V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
758 +   * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
759 +   */
760 +  RealType Thermo::getGyrationalVolume(){
761 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
762 +    
763 +    if (!snap->hasGyrationalVolume) {
764 +      
765 +      Mat3x3d intTensor;
766 +      RealType det;
767 +      Vector3d dummyAngMom;
768 +      RealType sysconstants;
769 +      RealType geomCnst;
770 +      RealType volume;
771 +      
772 +      geomCnst = 3.0/2.0;
773 +      /* Get the inertial tensor and angular momentum for free*/
774 +      getInertiaTensor(intTensor, dummyAngMom);
775 +      
776 +      det = intTensor.determinant();
777 +      sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
778 +      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
779 +
780 +      snap->setGyrationalVolume(volume);
781 +    }
782 +    return snap->getGyrationalVolume();
783 +  }
784 +  
785 +  void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
786 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
787 +
788 +    if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
789 +    
790 +      Mat3x3d intTensor;
791 +      Vector3d dummyAngMom;
792 +      RealType sysconstants;
793 +      RealType geomCnst;
794 +      
795 +      geomCnst = 3.0/2.0;
796 +      /* Get the inertia tensor and angular momentum for free*/
797 +      this->getInertiaTensor(intTensor, dummyAngMom);
798 +      
799 +      detI = intTensor.determinant();
800 +      sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
801 +      volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
802 +      snap->setGyrationalVolume(volume);
803 +    } else {
804 +      volume = snap->getGyrationalVolume();
805 +      detI = snap->getInertiaTensor().determinant();
806 +    }
807 +    return;
808 +  }
809 +  
810 +  RealType Thermo::getTaggedAtomPairDistance(){
811 +    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
812 +    Globals* simParams = info_->getSimParams();
813 +    
814 +    if (simParams->haveTaggedAtomPair() &&
815 +        simParams->havePrintTaggedPairDistance()) {
816 +      if ( simParams->getPrintTaggedPairDistance()) {
817 +        
818 +        pair<int, int> tap = simParams->getTaggedAtomPair();
819 +        Vector3d pos1, pos2, rab;
820 +        
821 + #ifdef IS_MPI        
822 +        int mol1 = info_->getGlobalMolMembership(tap.first);
823 +        int mol2 = info_->getGlobalMolMembership(tap.second);
824 +
825          int proc1 = info_->getMolToProc(mol1);
826          int proc2 = info_->getMolToProc(mol2);
827  
828 <        std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
265 <
266 <  RealType data[3];
828 >        RealType data[3];
829          if (proc1 == worldRank) {
830            StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
269          std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
831            pos1 = sd1->getPos();
832            data[0] = pos1.x();
833            data[1] = pos1.y();
834 <          data[2] = pos1.z();
834 >          data[2] = pos1.z();          
835            MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
836          } else {
837            MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
838            pos1 = Vector3d(data);
839          }
840  
280
841          if (proc2 == worldRank) {
842            StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
283          std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
843            pos2 = sd2->getPos();
844            data[0] = pos2.x();
845            data[1] = pos2.y();
846 <          data[2] = pos2.z();
846 >          data[2] = pos2.z();          
847            MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
848          } else {
849            MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
# Line 295 | Line 854 | namespace OpenMD {
854          StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
855          pos1 = at1->getPos();
856          pos2 = at2->getPos();
857 < #endif
857 > #endif        
858          rab = pos2 - pos1;
859          currSnapshot->wrapVector(rab);
860 <        stat[Stats::TAGGED_PAIR_DISTANCE] =  rab.length();
860 >        return rab.length();
861        }
862 +      return 0.0;    
863      }
864 <
305 <    /**@todo need refactorying*/
306 <    //Conserved Quantity is set by integrator and time is set by setTime
307 <
864 >    return 0.0;
865    }
866  
867 +  RealType Thermo::getHullVolume(){
868 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
869  
870 + #ifdef HAVE_QHULL    
871 +    if (!snap->hasHullVolume) {
872 +      Hull* surfaceMesh_;
873  
874 < Vector3d Thermo::getBoxDipole() {
875 <    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
876 <    SimInfo::MoleculeIterator miter;
877 <    std::vector<Atom*>::iterator aiter;
878 <    Molecule* mol;
879 <    Atom* atom;
880 <    RealType charge;
881 <    RealType moment(0.0);
882 <    Vector3d ri(0.0);
321 <    Vector3d dipoleVector(0.0);
322 <    Vector3d nPos(0.0);
323 <    Vector3d pPos(0.0);
324 <    RealType nChg(0.0);
325 <    RealType pChg(0.0);
326 <    int nCount = 0;
327 <    int pCount = 0;
328 <
329 <    RealType chargeToC = 1.60217733e-19;
330 <    RealType angstromToM = 1.0e-10;    RealType debyeToCm = 3.33564095198e-30;
331 <
332 <    for (mol = info_->beginMolecule(miter); mol != NULL;
333 <         mol = info_->nextMolecule(miter)) {
334 <
335 <      for (atom = mol->beginAtom(aiter); atom != NULL;
336 <           atom = mol->nextAtom(aiter)) {
337 <
338 <        if (atom->isCharge() ) {
339 <          charge = 0.0;
340 <          GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
341 <          if (data != NULL) {
342 <
343 <            charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
344 <            charge *= chargeToC;
345 <
346 <            ri = atom->getPos();
347 <            currSnapshot->wrapVector(ri);
348 <            ri *= angstromToM;
349 <
350 <            if (charge < 0.0) {
351 <              nPos += ri;
352 <              nChg -= charge;
353 <              nCount++;
354 <            } else if (charge > 0.0) {
355 <              pPos += ri;
356 <              pChg += charge;
357 <              pCount++;
358 <            }
359 <          }
360 <        }
361 <
362 <        if (atom->isDipole() ) {
363 <          Vector3d u_i = atom->getElectroFrame().getColumn(2);
364 <          GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
365 <          if (data != NULL) {
366 <            moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
367 <
368 <            moment *= debyeToCm;
369 <            dipoleVector += u_i * moment;
370 <          }
371 <        }
874 >      Globals* simParams = info_->getSimParams();
875 >      const std::string ht = simParams->getHULL_Method();
876 >      
877 >      if (ht == "Convex") {
878 >        surfaceMesh_ = new ConvexHull();
879 >      } else if (ht == "AlphaShape") {
880 >        surfaceMesh_ = new AlphaHull(simParams->getAlpha());
881 >      } else {
882 >        return 0.0;
883        }
884 +      
885 +      // Build a vector of stunt doubles to determine if they are
886 +      // surface atoms
887 +      std::vector<StuntDouble*> localSites_;
888 +      Molecule* mol;
889 +      StuntDouble* sd;
890 +      SimInfo::MoleculeIterator i;
891 +      Molecule::IntegrableObjectIterator  j;
892 +      
893 +      for (mol = info_->beginMolecule(i); mol != NULL;
894 +           mol = info_->nextMolecule(i)) {          
895 +        for (sd = mol->beginIntegrableObject(j);
896 +             sd != NULL;
897 +             sd = mol->nextIntegrableObject(j)) {  
898 +          localSites_.push_back(sd);
899 +        }
900 +      }  
901 +      
902 +      // Compute surface Mesh
903 +      surfaceMesh_->computeHull(localSites_);
904 +      snap->setHullVolume(surfaceMesh_->getVolume());
905      }
906 <
375 <
376 < #ifdef IS_MPI
377 <    RealType pChg_global, nChg_global;
378 <    int pCount_global, nCount_global;
379 <    Vector3d pPos_global, nPos_global, dipVec_global;
380 <
381 <    MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
382 <                  MPI_COMM_WORLD);
383 <    pChg = pChg_global;
384 <    MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
385 <                  MPI_COMM_WORLD);
386 <    nChg = nChg_global;
387 <    MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
388 <                  MPI_COMM_WORLD);
389 <    pCount = pCount_global;
390 <    MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
391 <                  MPI_COMM_WORLD);
392 <    nCount = nCount_global;
393 <    MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
394 <                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
395 <    pPos = pPos_global;
396 <    MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
397 <                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
398 <    nPos = nPos_global;
399 <    MPI_Allreduce(dipoleVector.getArrayPointer(),
400 <                  dipVec_global.getArrayPointer(), 3,
401 <                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
402 <    dipoleVector = dipVec_global;
403 < #endif //is_mpi
404 <
405 <    // first load the accumulated dipole moment (if dipoles were present)
406 <    Vector3d boxDipole = dipoleVector;
407 <    // now include the dipole moment due to charges
408 <    // use the lesser of the positive and negative charge totals
409 <    RealType chg_value = nChg <= pChg ? nChg : pChg;
410 <
411 <    // find the average positions
412 <    if (pCount > 0 && nCount > 0 ) {
413 <      pPos /= pCount;
414 <      nPos /= nCount;
415 <    }
416 <
417 <    // dipole is from the negative to the positive (physics notation)
418 <    boxDipole += (pPos - nPos) * chg_value;
419 <
420 <    return boxDipole;
421 <  }
422 <
423 < Vector3d Thermo::getThermalHelfand() {
424 <    Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
425 <    SimInfo::MoleculeIterator miter;
426 <    std::vector<Atom*>::iterator aiter;
427 <    Molecule* mol;
428 <    Atom* atom;
429 <    RealType mass;
430 <    Vector3d velocity;
431 <    Vector3d x_a;
432 <    RealType kinetic;
433 <    RealType potential;
434 <    RealType eatom;
435 <    RealType AvgE_a_ = 0;
436 <    Vector3d GKappa_t = V3Zero;
437 <    Vector3d ThermalHelfandMoment;
438 <
439 <    for (mol = info_->beginMolecule(miter); mol != NULL;
440 <         mol = info_->nextMolecule(miter)) {
441 <
442 <      for (atom = mol->beginAtom(aiter); atom != NULL;
443 <           atom = mol->nextAtom(aiter)) {
444 <
445 <        mass = atom->getMass();
446 <        velocity = atom->getVel();
447 <        kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
448 <                                   velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
449 <        potential =  atom->getParticlePot();
450 <        eatom += (kinetic + potential)/2.0;
451 <      }
452 <    }
453 <
454 <   int natoms = info_->getNGlobalAtoms();
455 < #ifdef IS_MPI
456 <
457 <    MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM,
458 <                  MPI_COMM_WORLD);
906 >    return snap->getHullVolume();
907   #else
908 <    AvgE_a_ = eatom;
908 >    return 0.0;
909   #endif
910 <    AvgE_a_ = AvgE_a_/RealType(natoms);
911 <
464 <    for (mol = info_->beginMolecule(miter); mol != NULL;
465 <         mol = info_->nextMolecule(miter)) {
466 <
467 <      for (atom = mol->beginAtom(aiter); atom != NULL;
468 <           atom = mol->nextAtom(aiter)) {
469 <
470 <        /* We think that x_a is relative to the total box and should be a wrapped coordinate */
471 <        x_a = atom->getPos();
472 <        currSnapshot->wrapVector(x_a);
473 <        potential =  atom->getParticlePot();
474 <        velocity = atom->getVel();
475 <        kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
476 <                           velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
477 <        eatom += (kinetic + potential)/2.0
478 <        GKappa_t += x_a*(eatom-AvgE_a_);
479 <        }
480 <      }
481 < #ifdef IS_MPI
482 <     MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3,
483 <                  MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
484 < #else
485 <     ThermalHelfandMoment = GKappa_t;
486 < #endif
487 <     return ThermalHelfandMoment;
488 <
489 < }
490 <
491 <
492 <
493 < } //end namespace OpenMD
910 >  }
911 > }

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines