ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
Revision: 1667
Committed: Wed Dec 14 20:24:39 2011 UTC (13 years, 4 months ago) by chuckv
File size: 16040 byte(s)
Log Message:
Fixed typo in thermo.

File Contents

# Content
1 /*
2 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39 * [4] Vardeman & Gezelter, in progress (2009).
40 */
41
42 #include <math.h>
43 #include <iostream>
44
45 #ifdef IS_MPI
46 #include <mpi.h>
47 #endif //is_mpi
48
49 #include "brains/Thermo.hpp"
50 #include "primitives/Molecule.hpp"
51 #include "utils/simError.h"
52 #include "utils/PhysicalConstants.hpp"
53
54 namespace OpenMD {
55
56 RealType Thermo::getKinetic() {
57 SimInfo::MoleculeIterator miter;
58 std::vector<StuntDouble*>::iterator iiter;
59 Molecule* mol;
60 StuntDouble* integrableObject;
61 Vector3d vel;
62 Vector3d angMom;
63 Mat3x3d I;
64 int i;
65 int j;
66 int k;
67 RealType mass;
68 RealType kinetic = 0.0;
69 RealType kinetic_global = 0.0;
70
71 for (mol = info_->beginMolecule(miter); mol != NULL; mol = info_->nextMolecule(miter)) {
72 for (integrableObject = mol->beginIntegrableObject(iiter); integrableObject != NULL;
73 integrableObject = mol->nextIntegrableObject(iiter)) {
74
75 mass = integrableObject->getMass();
76 vel = integrableObject->getVel();
77
78 kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
79
80 if (integrableObject->isDirectional()) {
81 angMom = integrableObject->getJ();
82 I = integrableObject->getI();
83
84 if (integrableObject->isLinear()) {
85 i = integrableObject->linearAxis();
86 j = (i + 1) % 3;
87 k = (i + 2) % 3;
88 kinetic += angMom[j] * angMom[j] / I(j, j) + angMom[k] * angMom[k] / I(k, k);
89 } else {
90 kinetic += angMom[0]*angMom[0]/I(0, 0) + angMom[1]*angMom[1]/I(1, 1)
91 + angMom[2]*angMom[2]/I(2, 2);
92 }
93 }
94
95 }
96 }
97
98 #ifdef IS_MPI
99
100 MPI_Allreduce(&kinetic, &kinetic_global, 1, MPI_REALTYPE, MPI_SUM,
101 MPI_COMM_WORLD);
102 kinetic = kinetic_global;
103
104 #endif //is_mpi
105
106 kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
107
108 return kinetic;
109 }
110
111 RealType Thermo::getPotential() {
112 RealType potential = 0.0;
113 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
114 RealType shortRangePot_local = curSnapshot->statData[Stats::SHORT_RANGE_POTENTIAL] ;
115
116 // Get total potential for entire system from MPI.
117
118 #ifdef IS_MPI
119
120 MPI_Allreduce(&shortRangePot_local, &potential, 1, MPI_REALTYPE, MPI_SUM,
121 MPI_COMM_WORLD);
122 potential += curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
123
124 #else
125
126 potential = shortRangePot_local + curSnapshot->statData[Stats::LONG_RANGE_POTENTIAL];
127
128 #endif // is_mpi
129
130 return potential;
131 }
132
133 RealType Thermo::getTotalE() {
134 RealType total;
135
136 total = this->getKinetic() + this->getPotential();
137 return total;
138 }
139
140 RealType Thermo::getTemperature() {
141
142 RealType temperature = ( 2.0 * this->getKinetic() ) / (info_->getNdf()* PhysicalConstants::kb );
143 return temperature;
144 }
145
146 RealType Thermo::getVolume() {
147 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
148 return curSnapshot->getVolume();
149 }
150
151 RealType Thermo::getPressure() {
152
153 // Relies on the calculation of the full molecular pressure tensor
154
155
156 Mat3x3d tensor;
157 RealType pressure;
158
159 tensor = getPressureTensor();
160
161 pressure = PhysicalConstants::pressureConvert * (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
162
163 return pressure;
164 }
165
166 RealType Thermo::getPressure(int direction) {
167
168 // Relies on the calculation of the full molecular pressure tensor
169
170
171 Mat3x3d tensor;
172 RealType pressure;
173
174 tensor = getPressureTensor();
175
176 pressure = PhysicalConstants::pressureConvert * tensor(direction, direction);
177
178 return pressure;
179 }
180
181 Mat3x3d Thermo::getPressureTensor() {
182 // returns pressure tensor in units amu*fs^-2*Ang^-1
183 // routine derived via viral theorem description in:
184 // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
185 Mat3x3d pressureTensor;
186 Mat3x3d p_local(0.0);
187 Mat3x3d p_global(0.0);
188
189 SimInfo::MoleculeIterator i;
190 std::vector<StuntDouble*>::iterator j;
191 Molecule* mol;
192 StuntDouble* integrableObject;
193 for (mol = info_->beginMolecule(i); mol != NULL; mol = info_->nextMolecule(i)) {
194 for (integrableObject = mol->beginIntegrableObject(j); integrableObject != NULL;
195 integrableObject = mol->nextIntegrableObject(j)) {
196
197 RealType mass = integrableObject->getMass();
198 Vector3d vcom = integrableObject->getVel();
199 p_local += mass * outProduct(vcom, vcom);
200 }
201 }
202
203 #ifdef IS_MPI
204 MPI_Allreduce(p_local.getArrayPointer(), p_global.getArrayPointer(), 9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
205 #else
206 p_global = p_local;
207 #endif // is_mpi
208
209 RealType volume = this->getVolume();
210 Snapshot* curSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
211 Mat3x3d tau = curSnapshot->statData.getTau();
212
213 pressureTensor = (p_global + PhysicalConstants::energyConvert* tau)/volume;
214
215 return pressureTensor;
216 }
217
218
219 void Thermo::saveStat(){
220 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
221 Stats& stat = currSnapshot->statData;
222
223 stat[Stats::KINETIC_ENERGY] = getKinetic();
224 stat[Stats::POTENTIAL_ENERGY] = getPotential();
225 stat[Stats::TOTAL_ENERGY] = stat[Stats::KINETIC_ENERGY] + stat[Stats::POTENTIAL_ENERGY] ;
226 stat[Stats::TEMPERATURE] = getTemperature();
227 stat[Stats::PRESSURE] = getPressure();
228 stat[Stats::VOLUME] = getVolume();
229
230 Mat3x3d tensor =getPressureTensor();
231 stat[Stats::PRESSURE_TENSOR_XX] = tensor(0, 0);
232 stat[Stats::PRESSURE_TENSOR_XY] = tensor(0, 1);
233 stat[Stats::PRESSURE_TENSOR_XZ] = tensor(0, 2);
234 stat[Stats::PRESSURE_TENSOR_YX] = tensor(1, 0);
235 stat[Stats::PRESSURE_TENSOR_YY] = tensor(1, 1);
236 stat[Stats::PRESSURE_TENSOR_YZ] = tensor(1, 2);
237 stat[Stats::PRESSURE_TENSOR_ZX] = tensor(2, 0);
238 stat[Stats::PRESSURE_TENSOR_ZY] = tensor(2, 1);
239 stat[Stats::PRESSURE_TENSOR_ZZ] = tensor(2, 2);
240 Vector3d GKappa_t = getThermalHelfand();
241 stat[Stats::THERMAL_HELFANDMOMENT_X] = GKappa_t.x();
242 stat[Stats::THERMAL_HELFANDMOMENT_Y] = GKappa_t.y();
243 stat[Stats::THERMAL_HELFANDMOMENT_Z] = GKappa_t.z();
244
245 Globals* simParams = info_->getSimParams();
246
247 if (simParams->haveTaggedAtomPair() &&
248 simParams->havePrintTaggedPairDistance()) {
249 if ( simParams->getPrintTaggedPairDistance()) {
250
251 std::pair<int, int> tap = simParams->getTaggedAtomPair();
252 Vector3d pos1, pos2, rab;
253
254 #ifdef IS_MPI
255 std::cerr << "tap = " << tap.first << " " << tap.second << std::endl;
256
257 int mol1 = info_->getGlobalMolMembership(tap.first);
258 int mol2 = info_->getGlobalMolMembership(tap.second);
259 std::cerr << "mols = " << mol1 << " " << mol2 << std::endl;
260
261 int proc1 = info_->getMolToProc(mol1);
262 int proc2 = info_->getMolToProc(mol2);
263
264 std::cerr << " procs = " << proc1 << " " <<proc2 <<std::endl;
265
266 RealType data[3];
267 if (proc1 == worldRank) {
268 StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
269 std::cerr << " on proc " << proc1 << ", sd1 has global index= " << sd1->getGlobalIndex() << std::endl;
270 pos1 = sd1->getPos();
271 data[0] = pos1.x();
272 data[1] = pos1.y();
273 data[2] = pos1.z();
274 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
275 } else {
276 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
277 pos1 = Vector3d(data);
278 }
279
280
281 if (proc2 == worldRank) {
282 StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
283 std::cerr << " on proc " << proc2 << ", sd2 has global index= " << sd2->getGlobalIndex() << std::endl;
284 pos2 = sd2->getPos();
285 data[0] = pos2.x();
286 data[1] = pos2.y();
287 data[2] = pos2.z();
288 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
289 } else {
290 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
291 pos2 = Vector3d(data);
292 }
293 #else
294 StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
295 StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
296 pos1 = at1->getPos();
297 pos2 = at2->getPos();
298 #endif
299 rab = pos2 - pos1;
300 currSnapshot->wrapVector(rab);
301 stat[Stats::TAGGED_PAIR_DISTANCE] = rab.length();
302 }
303 }
304
305 /**@todo need refactorying*/
306 //Conserved Quantity is set by integrator and time is set by setTime
307
308 }
309
310
311
312 Vector3d Thermo::getBoxDipole() {
313 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
314 SimInfo::MoleculeIterator miter;
315 std::vector<Atom*>::iterator aiter;
316 Molecule* mol;
317 Atom* atom;
318 RealType charge;
319 RealType moment(0.0);
320 Vector3d ri(0.0);
321 Vector3d dipoleVector(0.0);
322 Vector3d nPos(0.0);
323 Vector3d pPos(0.0);
324 RealType nChg(0.0);
325 RealType pChg(0.0);
326 int nCount = 0;
327 int pCount = 0;
328
329 RealType chargeToC = 1.60217733e-19;
330 RealType angstromToM = 1.0e-10; RealType debyeToCm = 3.33564095198e-30;
331
332 for (mol = info_->beginMolecule(miter); mol != NULL;
333 mol = info_->nextMolecule(miter)) {
334
335 for (atom = mol->beginAtom(aiter); atom != NULL;
336 atom = mol->nextAtom(aiter)) {
337
338 if (atom->isCharge() ) {
339 charge = 0.0;
340 GenericData* data = atom->getAtomType()->getPropertyByName("Charge");
341 if (data != NULL) {
342
343 charge = (dynamic_cast<DoubleGenericData*>(data))->getData();
344 charge *= chargeToC;
345
346 ri = atom->getPos();
347 currSnapshot->wrapVector(ri);
348 ri *= angstromToM;
349
350 if (charge < 0.0) {
351 nPos += ri;
352 nChg -= charge;
353 nCount++;
354 } else if (charge > 0.0) {
355 pPos += ri;
356 pChg += charge;
357 pCount++;
358 }
359 }
360 }
361
362 if (atom->isDipole() ) {
363 Vector3d u_i = atom->getElectroFrame().getColumn(2);
364 GenericData* data = dynamic_cast<DirectionalAtomType*>(atom->getAtomType())->getPropertyByName("Dipole");
365 if (data != NULL) {
366 moment = (dynamic_cast<DoubleGenericData*>(data))->getData();
367
368 moment *= debyeToCm;
369 dipoleVector += u_i * moment;
370 }
371 }
372 }
373 }
374
375
376 #ifdef IS_MPI
377 RealType pChg_global, nChg_global;
378 int pCount_global, nCount_global;
379 Vector3d pPos_global, nPos_global, dipVec_global;
380
381 MPI_Allreduce(&pChg, &pChg_global, 1, MPI_REALTYPE, MPI_SUM,
382 MPI_COMM_WORLD);
383 pChg = pChg_global;
384 MPI_Allreduce(&nChg, &nChg_global, 1, MPI_REALTYPE, MPI_SUM,
385 MPI_COMM_WORLD);
386 nChg = nChg_global;
387 MPI_Allreduce(&pCount, &pCount_global, 1, MPI_INTEGER, MPI_SUM,
388 MPI_COMM_WORLD);
389 pCount = pCount_global;
390 MPI_Allreduce(&nCount, &nCount_global, 1, MPI_INTEGER, MPI_SUM,
391 MPI_COMM_WORLD);
392 nCount = nCount_global;
393 MPI_Allreduce(pPos.getArrayPointer(), pPos_global.getArrayPointer(), 3,
394 MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
395 pPos = pPos_global;
396 MPI_Allreduce(nPos.getArrayPointer(), nPos_global.getArrayPointer(), 3,
397 MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
398 nPos = nPos_global;
399 MPI_Allreduce(dipoleVector.getArrayPointer(),
400 dipVec_global.getArrayPointer(), 3,
401 MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
402 dipoleVector = dipVec_global;
403 #endif //is_mpi
404
405 // first load the accumulated dipole moment (if dipoles were present)
406 Vector3d boxDipole = dipoleVector;
407 // now include the dipole moment due to charges
408 // use the lesser of the positive and negative charge totals
409 RealType chg_value = nChg <= pChg ? nChg : pChg;
410
411 // find the average positions
412 if (pCount > 0 && nCount > 0 ) {
413 pPos /= pCount;
414 nPos /= nCount;
415 }
416
417 // dipole is from the negative to the positive (physics notation)
418 boxDipole += (pPos - nPos) * chg_value;
419
420 return boxDipole;
421 }
422
423 Vector3d Thermo::getThermalHelfand() {
424 Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
425 SimInfo::MoleculeIterator miter;
426 std::vector<Atom*>::iterator aiter;
427 Molecule* mol;
428 Atom* atom;
429 RealType mass;
430 Vector3d velocity;
431 Vector3d x_a;
432 RealType kinetic;
433 RealType potential;
434 RealType eatom;
435 RealType AvgE_a_ = 0;
436 Vector3d GKappa_t = V3Zero;
437 Vector3d ThermalHelfandMoment;
438
439 for (mol = info_->beginMolecule(miter); mol != NULL;
440 mol = info_->nextMolecule(miter)) {
441
442 for (atom = mol->beginAtom(aiter); atom != NULL;
443 atom = mol->nextAtom(aiter)) {
444
445 mass = atom->getMass();
446 velocity = atom->getVel();
447 kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
448 velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
449 potential = atom->getParticlePot();
450 eatom += (kinetic + potential)/2.0;
451 }
452 }
453
454 int natoms = info_->getNGlobalAtoms();
455 #ifdef IS_MPI
456
457 MPI_Allreduce(&eatom, &AvgE_a_, 1, MPI_REALTYPE, MPI_SUM,
458 MPI_COMM_WORLD);
459 #else
460 AvgE_a_ = eatom;
461 #endif
462 AvgE_a_ = AvgE_a_/RealType(natoms);
463
464 for (mol = info_->beginMolecule(miter); mol != NULL;
465 mol = info_->nextMolecule(miter)) {
466
467 for (atom = mol->beginAtom(aiter); atom != NULL;
468 atom = mol->nextAtom(aiter)) {
469
470 /* We think that x_a is relative to the total box and should be a wrapped coordinate */
471 x_a = atom->getPos();
472 currSnapshot->wrapVector(x_a);
473 potential = atom->getParticlePot();
474 velocity = atom->getVel();
475 kinetic = mass * (velocity[0]*velocity[0] + velocity[1]*velocity[1] +
476 velocity[2]*velocity[2]) / PhysicalConstants::energyConvert;
477 eatom += (kinetic + potential)/2.0;
478 GKappa_t += x_a*(eatom-AvgE_a_);
479 }
480 }
481 #ifdef IS_MPI
482 MPI_Allreduce(GKappa_t.getArrayPointer(), ThermalHelfandMoment.getArrayPointer(), 3,
483 MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
484 #else
485 ThermalHelfandMoment = GKappa_t;
486 #endif
487 return ThermalHelfandMoment;
488
489 }
490
491
492
493 } //end namespace OpenMD

Properties

Name Value
svn:keywords Author Id Revision Date