ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
Revision: 2046
Committed: Tue Dec 2 22:11:04 2014 UTC (10 years, 5 months ago) by gezelter
File size: 31192 byte(s)
Log Message:
Fixed some broken comments for use with Doxygen.
Made changes to allow topology-based force-field overrides in include files.
Fixed a calculation of box quadrupole moments for molecules with point dipoles.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35 gezelter 1782 *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1782 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42 gezelter 2
43     #ifdef IS_MPI
44     #include <mpi.h>
45     #endif //is_mpi
46 gezelter 1938
47     #include <math.h>
48     #include <iostream>
49 gezelter 2
50 tim 3 #include "brains/Thermo.hpp"
51 gezelter 246 #include "primitives/Molecule.hpp"
52 tim 3 #include "utils/simError.h"
53 gezelter 1390 #include "utils/PhysicalConstants.hpp"
54 gezelter 1782 #include "types/FixedChargeAdapter.hpp"
55     #include "types/FluctuatingChargeAdapter.hpp"
56     #include "types/MultipoleAdapter.hpp"
57     #ifdef HAVE_QHULL
58     #include "math/ConvexHull.hpp"
59     #include "math/AlphaHull.hpp"
60     #endif
61 gezelter 2
62 gezelter 1782 using namespace std;
63 gezelter 1390 namespace OpenMD {
64 gezelter 2
65 gezelter 1782 RealType Thermo::getTranslationalKinetic() {
66     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67 chuckv 1666
68 gezelter 1782 if (!snap->hasTranslationalKineticEnergy) {
69     SimInfo::MoleculeIterator miter;
70     vector<StuntDouble*>::iterator iiter;
71     Molecule* mol;
72     StuntDouble* sd;
73     Vector3d vel;
74     RealType mass;
75     RealType kinetic(0.0);
76    
77     for (mol = info_->beginMolecule(miter); mol != NULL;
78     mol = info_->nextMolecule(miter)) {
79    
80     for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81     sd = mol->nextIntegrableObject(iiter)) {
82    
83     mass = sd->getMass();
84     vel = sd->getVel();
85    
86     kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87    
88     }
89     }
90    
91     #ifdef IS_MPI
92 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
93     MPI_SUM, MPI_COMM_WORLD);
94 gezelter 1782 #endif
95    
96     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97    
98    
99     snap->setTranslationalKineticEnergy(kinetic);
100     }
101     return snap->getTranslationalKineticEnergy();
102     }
103 gezelter 2
104 gezelter 1782 RealType Thermo::getRotationalKinetic() {
105     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106 chuckv 1666
107 gezelter 1782 if (!snap->hasRotationalKineticEnergy) {
108     SimInfo::MoleculeIterator miter;
109     vector<StuntDouble*>::iterator iiter;
110     Molecule* mol;
111     StuntDouble* sd;
112     Vector3d angMom;
113     Mat3x3d I;
114     int i, j, k;
115     RealType kinetic(0.0);
116    
117     for (mol = info_->beginMolecule(miter); mol != NULL;
118     mol = info_->nextMolecule(miter)) {
119    
120     for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121     sd = mol->nextIntegrableObject(iiter)) {
122    
123     if (sd->isDirectional()) {
124     angMom = sd->getJ();
125     I = sd->getI();
126    
127     if (sd->isLinear()) {
128     i = sd->linearAxis();
129     j = (i + 1) % 3;
130     k = (i + 2) % 3;
131     kinetic += angMom[j] * angMom[j] / I(j, j)
132     + angMom[k] * angMom[k] / I(k, k);
133     } else {
134     kinetic += angMom[0]*angMom[0]/I(0, 0)
135     + angMom[1]*angMom[1]/I(1, 1)
136     + angMom[2]*angMom[2]/I(2, 2);
137     }
138     }
139     }
140     }
141    
142     #ifdef IS_MPI
143 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
144     MPI_SUM, MPI_COMM_WORLD);
145 gezelter 1782 #endif
146    
147     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148    
149     snap->setRotationalKineticEnergy(kinetic);
150     }
151     return snap->getRotationalKineticEnergy();
152     }
153 chuckv 1666
154 gezelter 1782
155 chuckv 1666
156 gezelter 1782 RealType Thermo::getKinetic() {
157     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158    
159     if (!snap->hasKineticEnergy) {
160     RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161     snap->setKineticEnergy(ke);
162 chuckv 1666 }
163 gezelter 1782 return snap->getKineticEnergy();
164 chuckv 1666 }
165    
166 gezelter 1782 RealType Thermo::getPotential() {
167 chuckv 1666
168 gezelter 1782 // ForceManager computes the potential and stores it in the
169     // Snapshot. All we have to do is report it.
170 gezelter 2
171 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172     return snap->getPotentialEnergy();
173     }
174 gezelter 2
175 gezelter 1782 RealType Thermo::getTotalEnergy() {
176 gezelter 2
177 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178 gezelter 2
179 gezelter 1782 if (!snap->hasTotalEnergy) {
180     snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181     }
182    
183     return snap->getTotalEnergy();
184 gezelter 507 }
185 gezelter 2
186 gezelter 1782 RealType Thermo::getTemperature() {
187 gezelter 2
188 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189 gezelter 2
190 gezelter 1782 if (!snap->hasTemperature) {
191 gezelter 2
192 gezelter 1782 RealType temperature = ( 2.0 * this->getKinetic() )
193     / (info_->getNdf()* PhysicalConstants::kb );
194 gezelter 2
195 gezelter 1782 snap->setTemperature(temperature);
196     }
197    
198     return snap->getTemperature();
199     }
200 gezelter 2
201 gezelter 1782 RealType Thermo::getElectronicTemperature() {
202     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203 gezelter 2
204 gezelter 1782 if (!snap->hasElectronicTemperature) {
205    
206     SimInfo::MoleculeIterator miter;
207     vector<Atom*>::iterator iiter;
208     Molecule* mol;
209     Atom* atom;
210     RealType cvel;
211     RealType cmass;
212     RealType kinetic(0.0);
213     RealType eTemp;
214    
215     for (mol = info_->beginMolecule(miter); mol != NULL;
216     mol = info_->nextMolecule(miter)) {
217    
218     for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219     atom = mol->nextFluctuatingCharge(iiter)) {
220    
221     cmass = atom->getChargeMass();
222     cvel = atom->getFlucQVel();
223    
224     kinetic += cmass * cvel * cvel;
225    
226     }
227     }
228    
229     #ifdef IS_MPI
230 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
231     MPI_SUM, MPI_COMM_WORLD);
232 gezelter 1782 #endif
233 gezelter 2
234 gezelter 1782 kinetic *= 0.5;
235     eTemp = (2.0 * kinetic) /
236 gezelter 1879 (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237 gezelter 1782
238     snap->setElectronicTemperature(eTemp);
239     }
240    
241     return snap->getElectronicTemperature();
242 gezelter 507 }
243 gezelter 2
244    
245 gezelter 1782 RealType Thermo::getVolume() {
246     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247     return snap->getVolume();
248 gezelter 507 }
249 gezelter 2
250 gezelter 1782 RealType Thermo::getPressure() {
251     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252 chuckv 1666
253 gezelter 1782 if (!snap->hasPressure) {
254     // Relies on the calculation of the full molecular pressure tensor
255    
256     Mat3x3d tensor;
257     RealType pressure;
258    
259     tensor = getPressureTensor();
260    
261     pressure = PhysicalConstants::pressureConvert *
262     (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263    
264     snap->setPressure(pressure);
265     }
266    
267     return snap->getPressure();
268 gezelter 507 }
269 gezelter 2
270 gezelter 1782 Mat3x3d Thermo::getPressureTensor() {
271     // returns pressure tensor in units amu*fs^-2*Ang^-1
272     // routine derived via viral theorem description in:
273     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275    
276     if (!snap->hasPressureTensor) {
277    
278     Mat3x3d pressureTensor;
279     Mat3x3d p_tens(0.0);
280     RealType mass;
281     Vector3d vcom;
282    
283     SimInfo::MoleculeIterator i;
284     vector<StuntDouble*>::iterator j;
285     Molecule* mol;
286     StuntDouble* sd;
287     for (mol = info_->beginMolecule(i); mol != NULL;
288     mol = info_->nextMolecule(i)) {
289    
290     for (sd = mol->beginIntegrableObject(j); sd != NULL;
291     sd = mol->nextIntegrableObject(j)) {
292    
293     mass = sd->getMass();
294     vcom = sd->getVel();
295     p_tens += mass * outProduct(vcom, vcom);
296     }
297     }
298    
299     #ifdef IS_MPI
300 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9,
301     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
302 gezelter 1782 #endif
303    
304     RealType volume = this->getVolume();
305     Mat3x3d stressTensor = snap->getStressTensor();
306    
307     pressureTensor = (p_tens +
308     PhysicalConstants::energyConvert * stressTensor)/volume;
309    
310     snap->setPressureTensor(pressureTensor);
311     }
312     return snap->getPressureTensor();
313 gezelter 507 }
314 gezelter 2
315    
316    
317    
318 gezelter 1782 Vector3d Thermo::getSystemDipole() {
319     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 gezelter 2
321 gezelter 1782 if (!snap->hasSystemDipole) {
322     SimInfo::MoleculeIterator miter;
323     vector<Atom*>::iterator aiter;
324     Molecule* mol;
325     Atom* atom;
326     RealType charge;
327     Vector3d ri(0.0);
328     Vector3d dipoleVector(0.0);
329     Vector3d nPos(0.0);
330     Vector3d pPos(0.0);
331     RealType nChg(0.0);
332     RealType pChg(0.0);
333     int nCount = 0;
334     int pCount = 0;
335    
336     RealType chargeToC = 1.60217733e-19;
337     RealType angstromToM = 1.0e-10;
338     RealType debyeToCm = 3.33564095198e-30;
339    
340     for (mol = info_->beginMolecule(miter); mol != NULL;
341     mol = info_->nextMolecule(miter)) {
342    
343     for (atom = mol->beginAtom(aiter); atom != NULL;
344     atom = mol->nextAtom(aiter)) {
345    
346     charge = 0.0;
347    
348     FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349     if ( fca.isFixedCharge() ) {
350     charge = fca.getCharge();
351     }
352    
353     FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354     if ( fqa.isFluctuatingCharge() ) {
355     charge += atom->getFlucQPos();
356     }
357    
358     charge *= chargeToC;
359    
360     ri = atom->getPos();
361     snap->wrapVector(ri);
362     ri *= angstromToM;
363    
364     if (charge < 0.0) {
365     nPos += ri;
366     nChg -= charge;
367     nCount++;
368     } else if (charge > 0.0) {
369     pPos += ri;
370     pChg += charge;
371     pCount++;
372     }
373    
374 gezelter 1879 if (atom->isDipole()) {
375     dipoleVector += atom->getDipole() * debyeToCm;
376 gezelter 1782 }
377     }
378     }
379    
380    
381     #ifdef IS_MPI
382 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE,
383     MPI_SUM, MPI_COMM_WORLD);
384     MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE,
385     MPI_SUM, MPI_COMM_WORLD);
386    
387     MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER,
388     MPI_SUM, MPI_COMM_WORLD);
389     MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER,
390     MPI_SUM, MPI_COMM_WORLD);
391    
392     MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3,
393     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
394     MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3,
395     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
396 gezelter 2
397 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(),
398     3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399 gezelter 1782 #endif
400    
401     // first load the accumulated dipole moment (if dipoles were present)
402     Vector3d boxDipole = dipoleVector;
403     // now include the dipole moment due to charges
404     // use the lesser of the positive and negative charge totals
405     RealType chg_value = nChg <= pChg ? nChg : pChg;
406    
407     // find the average positions
408     if (pCount > 0 && nCount > 0 ) {
409     pPos /= pCount;
410     nPos /= nCount;
411     }
412    
413     // dipole is from the negative to the positive (physics notation)
414     boxDipole += (pPos - nPos) * chg_value;
415     snap->setSystemDipole(boxDipole);
416     }
417 tim 538
418 gezelter 1782 return snap->getSystemDipole();
419     }
420 tim 538
421 gezelter 2022
422     Mat3x3d Thermo::getSystemQuadrupole() {
423     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
424    
425     if (!snap->hasSystemQuadrupole) {
426     SimInfo::MoleculeIterator miter;
427     vector<Atom*>::iterator aiter;
428     Molecule* mol;
429     Atom* atom;
430     RealType charge;
431     Vector3d ri(0.0);
432     Vector3d dipole(0.0);
433     Mat3x3d qpole(0.0);
434    
435     RealType chargeToC = 1.60217733e-19;
436     RealType angstromToM = 1.0e-10;
437     RealType debyeToCm = 3.33564095198e-30;
438    
439     for (mol = info_->beginMolecule(miter); mol != NULL;
440     mol = info_->nextMolecule(miter)) {
441    
442     for (atom = mol->beginAtom(aiter); atom != NULL;
443     atom = mol->nextAtom(aiter)) {
444    
445     ri = atom->getPos();
446     snap->wrapVector(ri);
447     ri *= angstromToM;
448    
449     charge = 0.0;
450    
451     FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
452     if ( fca.isFixedCharge() ) {
453     charge = fca.getCharge();
454     }
455    
456     FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
457     if ( fqa.isFluctuatingCharge() ) {
458     charge += atom->getFlucQPos();
459     }
460    
461     charge *= chargeToC;
462    
463     qpole += 0.5 * charge * outProduct(ri, ri);
464    
465     MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
466    
467     if ( ma.isDipole() ) {
468     dipole = atom->getDipole() * debyeToCm;
469     qpole += 0.5 * outProduct( dipole, ri );
470 gezelter 2046 qpole += 0.5 * outProduct( ri, dipole );
471 gezelter 2022 }
472    
473     if ( ma.isQuadrupole() ) {
474     qpole += atom->getQuadrupole() * debyeToCm * angstromToM;
475     }
476     }
477     }
478    
479     #ifdef IS_MPI
480     MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(),
481     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
482     #endif
483    
484     snap->setSystemQuadrupole(qpole);
485     }
486    
487     return snap->getSystemQuadrupole();
488     }
489    
490 gezelter 1782 // Returns the Heat Flux Vector for the system
491     Vector3d Thermo::getHeatFlux(){
492     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
493     SimInfo::MoleculeIterator miter;
494     vector<StuntDouble*>::iterator iiter;
495     Molecule* mol;
496     StuntDouble* sd;
497     RigidBody::AtomIterator ai;
498     Atom* atom;
499     Vector3d vel;
500     Vector3d angMom;
501     Mat3x3d I;
502     int i;
503     int j;
504     int k;
505     RealType mass;
506 chuckv 1666
507 gezelter 1782 Vector3d x_a;
508     RealType kinetic;
509     RealType potential;
510     RealType eatom;
511     // Convective portion of the heat flux
512     Vector3d heatFluxJc = V3Zero;
513 tim 538
514 gezelter 1782 /* Calculate convective portion of the heat flux */
515     for (mol = info_->beginMolecule(miter); mol != NULL;
516     mol = info_->nextMolecule(miter)) {
517    
518     for (sd = mol->beginIntegrableObject(iiter);
519     sd != NULL;
520     sd = mol->nextIntegrableObject(iiter)) {
521    
522     mass = sd->getMass();
523     vel = sd->getVel();
524 tim 538
525 gezelter 1782 kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
526    
527     if (sd->isDirectional()) {
528     angMom = sd->getJ();
529     I = sd->getI();
530 tim 538
531 gezelter 1782 if (sd->isLinear()) {
532     i = sd->linearAxis();
533     j = (i + 1) % 3;
534     k = (i + 2) % 3;
535     kinetic += angMom[j] * angMom[j] / I(j, j)
536     + angMom[k] * angMom[k] / I(k, k);
537     } else {
538     kinetic += angMom[0]*angMom[0]/I(0, 0)
539     + angMom[1]*angMom[1]/I(1, 1)
540     + angMom[2]*angMom[2]/I(2, 2);
541     }
542     }
543 tim 538
544 gezelter 1782 potential = 0.0;
545 gezelter 2
546 gezelter 1782 if (sd->isRigidBody()) {
547     RigidBody* rb = dynamic_cast<RigidBody*>(sd);
548     for (atom = rb->beginAtom(ai); atom != NULL;
549     atom = rb->nextAtom(ai)) {
550     potential += atom->getParticlePot();
551     }
552     } else {
553     potential = sd->getParticlePot();
554     }
555 gezelter 2
556 gezelter 1782 potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
557     // The potential may not be a 1/2 factor
558     eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
559     heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
560     heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
561     heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
562 gezelter 507 }
563 gezelter 246 }
564 chuckv 1666
565 gezelter 1782 /* The J_v vector is reduced in the forceManager so everyone has
566     * the global Jv. Jc is computed over the local atoms and must be
567     * reduced among all processors.
568     */
569 gezelter 2 #ifdef IS_MPI
570 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE,
571     MPI_SUM, MPI_COMM_WORLD);
572 gezelter 1782 #endif
573    
574     // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
575 gezelter 2
576 gezelter 1782 Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
577     PhysicalConstants::energyConvert;
578    
579     // Correct for the fact the flux is 1/V (Jc + Jv)
580     return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
581     }
582 gezelter 1126
583 chuckv 1666
584 gezelter 1782 Vector3d Thermo::getComVel(){
585     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
586    
587     if (!snap->hasCOMvel) {
588    
589     SimInfo::MoleculeIterator i;
590     Molecule* mol;
591    
592     Vector3d comVel(0.0);
593     RealType totalMass(0.0);
594    
595     for (mol = info_->beginMolecule(i); mol != NULL;
596     mol = info_->nextMolecule(i)) {
597     RealType mass = mol->getMass();
598     totalMass += mass;
599     comVel += mass * mol->getComVel();
600     }
601    
602     #ifdef IS_MPI
603 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
604     MPI_SUM, MPI_COMM_WORLD);
605     MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
606     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
607 gezelter 1782 #endif
608    
609     comVel /= totalMass;
610     snap->setCOMvel(comVel);
611     }
612     return snap->getCOMvel();
613 gezelter 507 }
614 gezelter 2
615 gezelter 1782 Vector3d Thermo::getCom(){
616     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
617 chrisfen 998
618 gezelter 1782 if (!snap->hasCOM) {
619    
620     SimInfo::MoleculeIterator i;
621     Molecule* mol;
622    
623     Vector3d com(0.0);
624     RealType totalMass(0.0);
625    
626     for (mol = info_->beginMolecule(i); mol != NULL;
627     mol = info_->nextMolecule(i)) {
628     RealType mass = mol->getMass();
629     totalMass += mass;
630     com += mass * mol->getCom();
631     }
632    
633     #ifdef IS_MPI
634 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
635     MPI_SUM, MPI_COMM_WORLD);
636     MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
637     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
638 gezelter 1782 #endif
639    
640     com /= totalMass;
641     snap->setCOM(com);
642     }
643     return snap->getCOM();
644     }
645 chuckv 1666
646 gezelter 1782 /**
647     * Returns center of mass and center of mass velocity in one
648     * function call.
649     */
650     void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
651     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
652 gezelter 2
653 gezelter 1782 if (!(snap->hasCOM && snap->hasCOMvel)) {
654 tim 541
655 gezelter 1782 SimInfo::MoleculeIterator i;
656     Molecule* mol;
657    
658     RealType totalMass(0.0);
659    
660     com = 0.0;
661     comVel = 0.0;
662    
663     for (mol = info_->beginMolecule(i); mol != NULL;
664     mol = info_->nextMolecule(i)) {
665     RealType mass = mol->getMass();
666     totalMass += mass;
667     com += mass * mol->getCom();
668     comVel += mass * mol->getComVel();
669     }
670    
671     #ifdef IS_MPI
672 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
673     MPI_SUM, MPI_COMM_WORLD);
674     MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
675     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
676     MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
677     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
678 gezelter 1782 #endif
679    
680     com /= totalMass;
681     comVel /= totalMass;
682     snap->setCOM(com);
683     snap->setCOMvel(comVel);
684     }
685     com = snap->getCOM();
686     comVel = snap->getCOMvel();
687     return;
688     }
689    
690     /**
691 gezelter 1879 * \brief Return inertia tensor for entire system and angular momentum
692     * Vector.
693 gezelter 1782 *
694     *
695     *
696     * [ Ixx -Ixy -Ixz ]
697     * I =| -Iyx Iyy -Iyz |
698     * [ -Izx -Iyz Izz ]
699     */
700     void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
701     Vector3d &angularMomentum){
702    
703     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
704    
705     if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
706    
707     RealType xx = 0.0;
708     RealType yy = 0.0;
709     RealType zz = 0.0;
710     RealType xy = 0.0;
711     RealType xz = 0.0;
712     RealType yz = 0.0;
713     Vector3d com(0.0);
714     Vector3d comVel(0.0);
715    
716     getComAll(com, comVel);
717    
718     SimInfo::MoleculeIterator i;
719     Molecule* mol;
720    
721     Vector3d thisq(0.0);
722     Vector3d thisv(0.0);
723    
724     RealType thisMass = 0.0;
725    
726     for (mol = info_->beginMolecule(i); mol != NULL;
727     mol = info_->nextMolecule(i)) {
728    
729     thisq = mol->getCom()-com;
730     thisv = mol->getComVel()-comVel;
731     thisMass = mol->getMass();
732     // Compute moment of intertia coefficients.
733     xx += thisq[0]*thisq[0]*thisMass;
734     yy += thisq[1]*thisq[1]*thisMass;
735     zz += thisq[2]*thisq[2]*thisMass;
736    
737     // compute products of intertia
738     xy += thisq[0]*thisq[1]*thisMass;
739     xz += thisq[0]*thisq[2]*thisMass;
740     yz += thisq[1]*thisq[2]*thisMass;
741    
742     angularMomentum += cross( thisq, thisv ) * thisMass;
743     }
744    
745     inertiaTensor(0,0) = yy + zz;
746     inertiaTensor(0,1) = -xy;
747     inertiaTensor(0,2) = -xz;
748     inertiaTensor(1,0) = -xy;
749     inertiaTensor(1,1) = xx + zz;
750     inertiaTensor(1,2) = -yz;
751     inertiaTensor(2,0) = -xz;
752     inertiaTensor(2,1) = -yz;
753     inertiaTensor(2,2) = xx + yy;
754    
755     #ifdef IS_MPI
756 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(),
757     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
758     MPI_Allreduce(MPI_IN_PLACE,
759     angularMomentum.getArrayPointer(), 3,
760     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
761 gezelter 1782 #endif
762    
763     snap->setCOMw(angularMomentum);
764     snap->setInertiaTensor(inertiaTensor);
765     }
766    
767     angularMomentum = snap->getCOMw();
768     inertiaTensor = snap->getInertiaTensor();
769    
770     return;
771     }
772    
773 gezelter 1879
774     Mat3x3d Thermo::getBoundingBox(){
775    
776     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
777    
778     if (!(snap->hasBoundingBox)) {
779    
780     SimInfo::MoleculeIterator i;
781     Molecule::RigidBodyIterator ri;
782     Molecule::AtomIterator ai;
783     Molecule* mol;
784     RigidBody* rb;
785     Atom* atom;
786     Vector3d pos, bMax, bMin;
787     int index = 0;
788    
789     for (mol = info_->beginMolecule(i); mol != NULL;
790     mol = info_->nextMolecule(i)) {
791    
792     //change the positions of atoms which belong to the rigidbodies
793     for (rb = mol->beginRigidBody(ri); rb != NULL;
794     rb = mol->nextRigidBody(ri)) {
795     rb->updateAtoms();
796     }
797    
798     for(atom = mol->beginAtom(ai); atom != NULL;
799     atom = mol->nextAtom(ai)) {
800    
801     pos = atom->getPos();
802    
803     if (index == 0) {
804     bMax = pos;
805     bMin = pos;
806     } else {
807     for (int i = 0; i < 3; i++) {
808     bMax[i] = max(bMax[i], pos[i]);
809     bMin[i] = min(bMin[i], pos[i]);
810     }
811     }
812     index++;
813     }
814     }
815    
816     #ifdef IS_MPI
817 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE,
818     MPI_MAX, MPI_COMM_WORLD);
819 gezelter 1879
820 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE,
821     MPI_MIN, MPI_COMM_WORLD);
822 gezelter 1879 #endif
823     Mat3x3d bBox = Mat3x3d(0.0);
824     for (int i = 0; i < 3; i++) {
825     bBox(i,i) = bMax[i] - bMin[i];
826     }
827     snap->setBoundingBox(bBox);
828     }
829    
830     return snap->getBoundingBox();
831     }
832    
833    
834 gezelter 1782 // Returns the angular momentum of the system
835     Vector3d Thermo::getAngularMomentum(){
836     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
837    
838     if (!snap->hasCOMw) {
839    
840     Vector3d com(0.0);
841     Vector3d comVel(0.0);
842     Vector3d angularMomentum(0.0);
843    
844     getComAll(com, comVel);
845    
846     SimInfo::MoleculeIterator i;
847     Molecule* mol;
848    
849     Vector3d thisr(0.0);
850     Vector3d thisp(0.0);
851    
852     RealType thisMass;
853    
854     for (mol = info_->beginMolecule(i); mol != NULL;
855     mol = info_->nextMolecule(i)) {
856     thisMass = mol->getMass();
857     thisr = mol->getCom() - com;
858     thisp = (mol->getComVel() - comVel) * thisMass;
859    
860     angularMomentum += cross( thisr, thisp );
861     }
862    
863     #ifdef IS_MPI
864 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE,
865     angularMomentum.getArrayPointer(), 3,
866     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
867 gezelter 1782 #endif
868    
869     snap->setCOMw(angularMomentum);
870     }
871    
872     return snap->getCOMw();
873     }
874    
875    
876     /**
877     * Returns the Volume of the system based on a ellipsoid with
878     * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
879     * where R_i are related to the principle inertia moments
880     * R_i = sqrt(C*I_i/N), this reduces to
881     * V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
882     * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
883     */
884     RealType Thermo::getGyrationalVolume(){
885     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
886    
887     if (!snap->hasGyrationalVolume) {
888    
889     Mat3x3d intTensor;
890     RealType det;
891     Vector3d dummyAngMom;
892     RealType sysconstants;
893     RealType geomCnst;
894     RealType volume;
895    
896     geomCnst = 3.0/2.0;
897     /* Get the inertial tensor and angular momentum for free*/
898     getInertiaTensor(intTensor, dummyAngMom);
899    
900     det = intTensor.determinant();
901     sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
902     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
903    
904     snap->setGyrationalVolume(volume);
905     }
906     return snap->getGyrationalVolume();
907     }
908    
909     void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
910     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
911    
912     if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
913    
914     Mat3x3d intTensor;
915     Vector3d dummyAngMom;
916     RealType sysconstants;
917     RealType geomCnst;
918    
919     geomCnst = 3.0/2.0;
920     /* Get the inertia tensor and angular momentum for free*/
921     this->getInertiaTensor(intTensor, dummyAngMom);
922    
923     detI = intTensor.determinant();
924     sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
925     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
926     snap->setGyrationalVolume(volume);
927     } else {
928     volume = snap->getGyrationalVolume();
929     detI = snap->getInertiaTensor().determinant();
930     }
931     return;
932     }
933    
934     RealType Thermo::getTaggedAtomPairDistance(){
935     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
936 gezelter 1291 Globals* simParams = info_->getSimParams();
937 gezelter 1782
938     if (simParams->haveTaggedAtomPair() &&
939 gezelter 1291 simParams->havePrintTaggedPairDistance()) {
940     if ( simParams->getPrintTaggedPairDistance()) {
941 gezelter 1782
942     pair<int, int> tap = simParams->getTaggedAtomPair();
943 gezelter 1291 Vector3d pos1, pos2, rab;
944 gezelter 1782
945     #ifdef IS_MPI
946     int mol1 = info_->getGlobalMolMembership(tap.first);
947     int mol2 = info_->getGlobalMolMembership(tap.second);
948 gezelter 1291
949     int proc1 = info_->getMolToProc(mol1);
950     int proc2 = info_->getMolToProc(mol2);
951    
952 gezelter 1782 RealType data[3];
953 gezelter 1291 if (proc1 == worldRank) {
954     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
955     pos1 = sd1->getPos();
956     data[0] = pos1.x();
957     data[1] = pos1.y();
958 gezelter 1782 data[2] = pos1.z();
959 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
960 gezelter 1291 } else {
961 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
962 gezelter 1291 pos1 = Vector3d(data);
963     }
964 chuckv 1292
965 gezelter 1291 if (proc2 == worldRank) {
966     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
967     pos2 = sd2->getPos();
968     data[0] = pos2.x();
969     data[1] = pos2.y();
970 gezelter 1796 data[2] = pos2.z();
971 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
972 gezelter 1291 } else {
973 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
974 gezelter 1291 pos2 = Vector3d(data);
975     }
976     #else
977     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
978     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
979     pos1 = at1->getPos();
980     pos2 = at2->getPos();
981 gezelter 1782 #endif
982 gezelter 1291 rab = pos2 - pos1;
983     currSnapshot->wrapVector(rab);
984 gezelter 1782 return rab.length();
985 gezelter 1291 }
986 gezelter 1782 return 0.0;
987 gezelter 1291 }
988 gezelter 1782 return 0.0;
989 gezelter 507 }
990 gezelter 2
991 gezelter 1782 RealType Thermo::getHullVolume(){
992 gezelter 1879 #ifdef HAVE_QHULL
993 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
994     if (!snap->hasHullVolume) {
995     Hull* surfaceMesh_;
996 gezelter 1879
997 gezelter 1782 Globals* simParams = info_->getSimParams();
998     const std::string ht = simParams->getHULL_Method();
999    
1000     if (ht == "Convex") {
1001     surfaceMesh_ = new ConvexHull();
1002     } else if (ht == "AlphaShape") {
1003     surfaceMesh_ = new AlphaHull(simParams->getAlpha());
1004     } else {
1005     return 0.0;
1006     }
1007    
1008     // Build a vector of stunt doubles to determine if they are
1009     // surface atoms
1010     std::vector<StuntDouble*> localSites_;
1011     Molecule* mol;
1012     StuntDouble* sd;
1013     SimInfo::MoleculeIterator i;
1014     Molecule::IntegrableObjectIterator j;
1015    
1016     for (mol = info_->beginMolecule(i); mol != NULL;
1017     mol = info_->nextMolecule(i)) {
1018     for (sd = mol->beginIntegrableObject(j);
1019     sd != NULL;
1020     sd = mol->nextIntegrableObject(j)) {
1021     localSites_.push_back(sd);
1022 jmichalk 1604 }
1023 gezelter 1782 }
1024    
1025     // Compute surface Mesh
1026     surfaceMesh_->computeHull(localSites_);
1027     snap->setHullVolume(surfaceMesh_->getVolume());
1028 gezelter 1879
1029     delete surfaceMesh_;
1030 jmichalk 1604 }
1031 gezelter 1879
1032 gezelter 1782 return snap->getHullVolume();
1033 chuckv 1666 #else
1034 gezelter 1782 return 0.0;
1035 chuckv 1638 #endif
1036 gezelter 1782 }
1037 gezelter 1879
1038    
1039 gezelter 1782 }

Properties

Name Value
svn:keywords Author Id Revision Date