ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
Revision: 2022
Committed: Fri Sep 26 22:22:28 2014 UTC (10 years, 7 months ago) by gezelter
File size: 31139 byte(s)
Log Message:
Added support for accumulateBoxQuadrupole flag

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35 gezelter 1782 *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 gezelter 1879 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 gezelter 1782 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42 gezelter 2
43     #ifdef IS_MPI
44     #include <mpi.h>
45     #endif //is_mpi
46 gezelter 1938
47     #include <math.h>
48     #include <iostream>
49 gezelter 2
50 tim 3 #include "brains/Thermo.hpp"
51 gezelter 246 #include "primitives/Molecule.hpp"
52 tim 3 #include "utils/simError.h"
53 gezelter 1390 #include "utils/PhysicalConstants.hpp"
54 gezelter 1782 #include "types/FixedChargeAdapter.hpp"
55     #include "types/FluctuatingChargeAdapter.hpp"
56     #include "types/MultipoleAdapter.hpp"
57     #ifdef HAVE_QHULL
58     #include "math/ConvexHull.hpp"
59     #include "math/AlphaHull.hpp"
60     #endif
61 gezelter 2
62 gezelter 1782 using namespace std;
63 gezelter 1390 namespace OpenMD {
64 gezelter 2
65 gezelter 1782 RealType Thermo::getTranslationalKinetic() {
66     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67 chuckv 1666
68 gezelter 1782 if (!snap->hasTranslationalKineticEnergy) {
69     SimInfo::MoleculeIterator miter;
70     vector<StuntDouble*>::iterator iiter;
71     Molecule* mol;
72     StuntDouble* sd;
73     Vector3d vel;
74     RealType mass;
75     RealType kinetic(0.0);
76    
77     for (mol = info_->beginMolecule(miter); mol != NULL;
78     mol = info_->nextMolecule(miter)) {
79    
80     for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81     sd = mol->nextIntegrableObject(iiter)) {
82    
83     mass = sd->getMass();
84     vel = sd->getVel();
85    
86     kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87    
88     }
89     }
90    
91     #ifdef IS_MPI
92 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
93     MPI_SUM, MPI_COMM_WORLD);
94 gezelter 1782 #endif
95    
96     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97    
98    
99     snap->setTranslationalKineticEnergy(kinetic);
100     }
101     return snap->getTranslationalKineticEnergy();
102     }
103 gezelter 2
104 gezelter 1782 RealType Thermo::getRotationalKinetic() {
105     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106 chuckv 1666
107 gezelter 1782 if (!snap->hasRotationalKineticEnergy) {
108     SimInfo::MoleculeIterator miter;
109     vector<StuntDouble*>::iterator iiter;
110     Molecule* mol;
111     StuntDouble* sd;
112     Vector3d angMom;
113     Mat3x3d I;
114     int i, j, k;
115     RealType kinetic(0.0);
116    
117     for (mol = info_->beginMolecule(miter); mol != NULL;
118     mol = info_->nextMolecule(miter)) {
119    
120     for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121     sd = mol->nextIntegrableObject(iiter)) {
122    
123     if (sd->isDirectional()) {
124     angMom = sd->getJ();
125     I = sd->getI();
126    
127     if (sd->isLinear()) {
128     i = sd->linearAxis();
129     j = (i + 1) % 3;
130     k = (i + 2) % 3;
131     kinetic += angMom[j] * angMom[j] / I(j, j)
132     + angMom[k] * angMom[k] / I(k, k);
133     } else {
134     kinetic += angMom[0]*angMom[0]/I(0, 0)
135     + angMom[1]*angMom[1]/I(1, 1)
136     + angMom[2]*angMom[2]/I(2, 2);
137     }
138     }
139     }
140     }
141    
142     #ifdef IS_MPI
143 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
144     MPI_SUM, MPI_COMM_WORLD);
145 gezelter 1782 #endif
146    
147     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148    
149     snap->setRotationalKineticEnergy(kinetic);
150     }
151     return snap->getRotationalKineticEnergy();
152     }
153 chuckv 1666
154 gezelter 1782
155 chuckv 1666
156 gezelter 1782 RealType Thermo::getKinetic() {
157     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158    
159     if (!snap->hasKineticEnergy) {
160     RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161     snap->setKineticEnergy(ke);
162 chuckv 1666 }
163 gezelter 1782 return snap->getKineticEnergy();
164 chuckv 1666 }
165    
166 gezelter 1782 RealType Thermo::getPotential() {
167 chuckv 1666
168 gezelter 1782 // ForceManager computes the potential and stores it in the
169     // Snapshot. All we have to do is report it.
170 gezelter 2
171 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172     return snap->getPotentialEnergy();
173     }
174 gezelter 2
175 gezelter 1782 RealType Thermo::getTotalEnergy() {
176 gezelter 2
177 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178 gezelter 2
179 gezelter 1782 if (!snap->hasTotalEnergy) {
180     snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181     }
182    
183     return snap->getTotalEnergy();
184 gezelter 507 }
185 gezelter 2
186 gezelter 1782 RealType Thermo::getTemperature() {
187 gezelter 2
188 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189 gezelter 2
190 gezelter 1782 if (!snap->hasTemperature) {
191 gezelter 2
192 gezelter 1782 RealType temperature = ( 2.0 * this->getKinetic() )
193     / (info_->getNdf()* PhysicalConstants::kb );
194 gezelter 2
195 gezelter 1782 snap->setTemperature(temperature);
196     }
197    
198     return snap->getTemperature();
199     }
200 gezelter 2
201 gezelter 1782 RealType Thermo::getElectronicTemperature() {
202     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203 gezelter 2
204 gezelter 1782 if (!snap->hasElectronicTemperature) {
205    
206     SimInfo::MoleculeIterator miter;
207     vector<Atom*>::iterator iiter;
208     Molecule* mol;
209     Atom* atom;
210     RealType cvel;
211     RealType cmass;
212     RealType kinetic(0.0);
213     RealType eTemp;
214    
215     for (mol = info_->beginMolecule(miter); mol != NULL;
216     mol = info_->nextMolecule(miter)) {
217    
218     for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219     atom = mol->nextFluctuatingCharge(iiter)) {
220    
221     cmass = atom->getChargeMass();
222     cvel = atom->getFlucQVel();
223    
224     kinetic += cmass * cvel * cvel;
225    
226     }
227     }
228    
229     #ifdef IS_MPI
230 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &kinetic, 1, MPI_REALTYPE,
231     MPI_SUM, MPI_COMM_WORLD);
232 gezelter 1782 #endif
233 gezelter 2
234 gezelter 1782 kinetic *= 0.5;
235     eTemp = (2.0 * kinetic) /
236 gezelter 1879 (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237 gezelter 1782
238     snap->setElectronicTemperature(eTemp);
239     }
240    
241     return snap->getElectronicTemperature();
242 gezelter 507 }
243 gezelter 2
244    
245 gezelter 1782 RealType Thermo::getVolume() {
246     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247     return snap->getVolume();
248 gezelter 507 }
249 gezelter 2
250 gezelter 1782 RealType Thermo::getPressure() {
251     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252 chuckv 1666
253 gezelter 1782 if (!snap->hasPressure) {
254     // Relies on the calculation of the full molecular pressure tensor
255    
256     Mat3x3d tensor;
257     RealType pressure;
258    
259     tensor = getPressureTensor();
260    
261     pressure = PhysicalConstants::pressureConvert *
262     (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263    
264     snap->setPressure(pressure);
265     }
266    
267     return snap->getPressure();
268 gezelter 507 }
269 gezelter 2
270 gezelter 1782 Mat3x3d Thermo::getPressureTensor() {
271     // returns pressure tensor in units amu*fs^-2*Ang^-1
272     // routine derived via viral theorem description in:
273     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275    
276     if (!snap->hasPressureTensor) {
277    
278     Mat3x3d pressureTensor;
279     Mat3x3d p_tens(0.0);
280     RealType mass;
281     Vector3d vcom;
282    
283     SimInfo::MoleculeIterator i;
284     vector<StuntDouble*>::iterator j;
285     Molecule* mol;
286     StuntDouble* sd;
287     for (mol = info_->beginMolecule(i); mol != NULL;
288     mol = info_->nextMolecule(i)) {
289    
290     for (sd = mol->beginIntegrableObject(j); sd != NULL;
291     sd = mol->nextIntegrableObject(j)) {
292    
293     mass = sd->getMass();
294     vcom = sd->getVel();
295     p_tens += mass * outProduct(vcom, vcom);
296     }
297     }
298    
299     #ifdef IS_MPI
300 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, p_tens.getArrayPointer(), 9,
301     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
302 gezelter 1782 #endif
303    
304     RealType volume = this->getVolume();
305     Mat3x3d stressTensor = snap->getStressTensor();
306    
307     pressureTensor = (p_tens +
308     PhysicalConstants::energyConvert * stressTensor)/volume;
309    
310     snap->setPressureTensor(pressureTensor);
311     }
312     return snap->getPressureTensor();
313 gezelter 507 }
314 gezelter 2
315    
316    
317    
318 gezelter 1782 Vector3d Thermo::getSystemDipole() {
319     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 gezelter 2
321 gezelter 1782 if (!snap->hasSystemDipole) {
322     SimInfo::MoleculeIterator miter;
323     vector<Atom*>::iterator aiter;
324     Molecule* mol;
325     Atom* atom;
326     RealType charge;
327     Vector3d ri(0.0);
328     Vector3d dipoleVector(0.0);
329     Vector3d nPos(0.0);
330     Vector3d pPos(0.0);
331     RealType nChg(0.0);
332     RealType pChg(0.0);
333     int nCount = 0;
334     int pCount = 0;
335    
336     RealType chargeToC = 1.60217733e-19;
337     RealType angstromToM = 1.0e-10;
338     RealType debyeToCm = 3.33564095198e-30;
339    
340     for (mol = info_->beginMolecule(miter); mol != NULL;
341     mol = info_->nextMolecule(miter)) {
342    
343     for (atom = mol->beginAtom(aiter); atom != NULL;
344     atom = mol->nextAtom(aiter)) {
345    
346     charge = 0.0;
347    
348     FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
349     if ( fca.isFixedCharge() ) {
350     charge = fca.getCharge();
351     }
352    
353     FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
354     if ( fqa.isFluctuatingCharge() ) {
355     charge += atom->getFlucQPos();
356     }
357    
358     charge *= chargeToC;
359    
360     ri = atom->getPos();
361     snap->wrapVector(ri);
362     ri *= angstromToM;
363    
364     if (charge < 0.0) {
365     nPos += ri;
366     nChg -= charge;
367     nCount++;
368     } else if (charge > 0.0) {
369     pPos += ri;
370     pChg += charge;
371     pCount++;
372     }
373    
374 gezelter 1879 if (atom->isDipole()) {
375     dipoleVector += atom->getDipole() * debyeToCm;
376 gezelter 1782 }
377     }
378     }
379    
380    
381     #ifdef IS_MPI
382 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &pChg, 1, MPI_REALTYPE,
383     MPI_SUM, MPI_COMM_WORLD);
384     MPI_Allreduce(MPI_IN_PLACE, &nChg, 1, MPI_REALTYPE,
385     MPI_SUM, MPI_COMM_WORLD);
386    
387     MPI_Allreduce(MPI_IN_PLACE, &pCount, 1, MPI_INTEGER,
388     MPI_SUM, MPI_COMM_WORLD);
389     MPI_Allreduce(MPI_IN_PLACE, &nCount, 1, MPI_INTEGER,
390     MPI_SUM, MPI_COMM_WORLD);
391    
392     MPI_Allreduce(MPI_IN_PLACE, pPos.getArrayPointer(), 3,
393     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
394     MPI_Allreduce(MPI_IN_PLACE, nPos.getArrayPointer(), 3,
395     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
396 gezelter 2
397 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, dipoleVector.getArrayPointer(),
398     3, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
399 gezelter 1782 #endif
400    
401     // first load the accumulated dipole moment (if dipoles were present)
402     Vector3d boxDipole = dipoleVector;
403     // now include the dipole moment due to charges
404     // use the lesser of the positive and negative charge totals
405     RealType chg_value = nChg <= pChg ? nChg : pChg;
406    
407     // find the average positions
408     if (pCount > 0 && nCount > 0 ) {
409     pPos /= pCount;
410     nPos /= nCount;
411     }
412    
413     // dipole is from the negative to the positive (physics notation)
414     boxDipole += (pPos - nPos) * chg_value;
415     snap->setSystemDipole(boxDipole);
416     }
417 tim 538
418 gezelter 1782 return snap->getSystemDipole();
419     }
420 tim 538
421 gezelter 2022
422     Mat3x3d Thermo::getSystemQuadrupole() {
423     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
424    
425     if (!snap->hasSystemQuadrupole) {
426     SimInfo::MoleculeIterator miter;
427     vector<Atom*>::iterator aiter;
428     Molecule* mol;
429     Atom* atom;
430     RealType charge;
431     Vector3d ri(0.0);
432     Vector3d dipole(0.0);
433     Mat3x3d qpole(0.0);
434    
435     RealType chargeToC = 1.60217733e-19;
436     RealType angstromToM = 1.0e-10;
437     RealType debyeToCm = 3.33564095198e-30;
438    
439     for (mol = info_->beginMolecule(miter); mol != NULL;
440     mol = info_->nextMolecule(miter)) {
441    
442     for (atom = mol->beginAtom(aiter); atom != NULL;
443     atom = mol->nextAtom(aiter)) {
444    
445     ri = atom->getPos();
446     snap->wrapVector(ri);
447     ri *= angstromToM;
448    
449     charge = 0.0;
450    
451     FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
452     if ( fca.isFixedCharge() ) {
453     charge = fca.getCharge();
454     }
455    
456     FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
457     if ( fqa.isFluctuatingCharge() ) {
458     charge += atom->getFlucQPos();
459     }
460    
461     charge *= chargeToC;
462    
463     qpole += 0.5 * charge * outProduct(ri, ri);
464    
465     MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
466    
467     if ( ma.isDipole() ) {
468     dipole = atom->getDipole() * debyeToCm;
469     qpole += 0.5 * outProduct( dipole, ri );
470     }
471    
472     if ( ma.isQuadrupole() ) {
473     qpole += atom->getQuadrupole() * debyeToCm * angstromToM;
474     }
475     }
476     }
477    
478     #ifdef IS_MPI
479     MPI_Allreduce(MPI_IN_PLACE, qpole.getArrayPointer(),
480     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
481     #endif
482    
483     snap->setSystemQuadrupole(qpole);
484     }
485    
486     return snap->getSystemQuadrupole();
487     }
488    
489 gezelter 1782 // Returns the Heat Flux Vector for the system
490     Vector3d Thermo::getHeatFlux(){
491     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
492     SimInfo::MoleculeIterator miter;
493     vector<StuntDouble*>::iterator iiter;
494     Molecule* mol;
495     StuntDouble* sd;
496     RigidBody::AtomIterator ai;
497     Atom* atom;
498     Vector3d vel;
499     Vector3d angMom;
500     Mat3x3d I;
501     int i;
502     int j;
503     int k;
504     RealType mass;
505 chuckv 1666
506 gezelter 1782 Vector3d x_a;
507     RealType kinetic;
508     RealType potential;
509     RealType eatom;
510     // Convective portion of the heat flux
511     Vector3d heatFluxJc = V3Zero;
512 tim 538
513 gezelter 1782 /* Calculate convective portion of the heat flux */
514     for (mol = info_->beginMolecule(miter); mol != NULL;
515     mol = info_->nextMolecule(miter)) {
516    
517     for (sd = mol->beginIntegrableObject(iiter);
518     sd != NULL;
519     sd = mol->nextIntegrableObject(iiter)) {
520    
521     mass = sd->getMass();
522     vel = sd->getVel();
523 tim 538
524 gezelter 1782 kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
525    
526     if (sd->isDirectional()) {
527     angMom = sd->getJ();
528     I = sd->getI();
529 tim 538
530 gezelter 1782 if (sd->isLinear()) {
531     i = sd->linearAxis();
532     j = (i + 1) % 3;
533     k = (i + 2) % 3;
534     kinetic += angMom[j] * angMom[j] / I(j, j)
535     + angMom[k] * angMom[k] / I(k, k);
536     } else {
537     kinetic += angMom[0]*angMom[0]/I(0, 0)
538     + angMom[1]*angMom[1]/I(1, 1)
539     + angMom[2]*angMom[2]/I(2, 2);
540     }
541     }
542 tim 538
543 gezelter 1782 potential = 0.0;
544 gezelter 2
545 gezelter 1782 if (sd->isRigidBody()) {
546     RigidBody* rb = dynamic_cast<RigidBody*>(sd);
547     for (atom = rb->beginAtom(ai); atom != NULL;
548     atom = rb->nextAtom(ai)) {
549     potential += atom->getParticlePot();
550     }
551     } else {
552     potential = sd->getParticlePot();
553     }
554 gezelter 2
555 gezelter 1782 potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
556     // The potential may not be a 1/2 factor
557     eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
558     heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
559     heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
560     heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
561 gezelter 507 }
562 gezelter 246 }
563 chuckv 1666
564 gezelter 1782 /* The J_v vector is reduced in the forceManager so everyone has
565     * the global Jv. Jc is computed over the local atoms and must be
566     * reduced among all processors.
567     */
568 gezelter 2 #ifdef IS_MPI
569 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &heatFluxJc[0], 3, MPI_REALTYPE,
570     MPI_SUM, MPI_COMM_WORLD);
571 gezelter 1782 #endif
572    
573     // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
574 gezelter 2
575 gezelter 1782 Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
576     PhysicalConstants::energyConvert;
577    
578     // Correct for the fact the flux is 1/V (Jc + Jv)
579     return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
580     }
581 gezelter 1126
582 chuckv 1666
583 gezelter 1782 Vector3d Thermo::getComVel(){
584     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
585    
586     if (!snap->hasCOMvel) {
587    
588     SimInfo::MoleculeIterator i;
589     Molecule* mol;
590    
591     Vector3d comVel(0.0);
592     RealType totalMass(0.0);
593    
594     for (mol = info_->beginMolecule(i); mol != NULL;
595     mol = info_->nextMolecule(i)) {
596     RealType mass = mol->getMass();
597     totalMass += mass;
598     comVel += mass * mol->getComVel();
599     }
600    
601     #ifdef IS_MPI
602 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
603     MPI_SUM, MPI_COMM_WORLD);
604     MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
605     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
606 gezelter 1782 #endif
607    
608     comVel /= totalMass;
609     snap->setCOMvel(comVel);
610     }
611     return snap->getCOMvel();
612 gezelter 507 }
613 gezelter 2
614 gezelter 1782 Vector3d Thermo::getCom(){
615     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
616 chrisfen 998
617 gezelter 1782 if (!snap->hasCOM) {
618    
619     SimInfo::MoleculeIterator i;
620     Molecule* mol;
621    
622     Vector3d com(0.0);
623     RealType totalMass(0.0);
624    
625     for (mol = info_->beginMolecule(i); mol != NULL;
626     mol = info_->nextMolecule(i)) {
627     RealType mass = mol->getMass();
628     totalMass += mass;
629     com += mass * mol->getCom();
630     }
631    
632     #ifdef IS_MPI
633 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
634     MPI_SUM, MPI_COMM_WORLD);
635     MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
636     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
637 gezelter 1782 #endif
638    
639     com /= totalMass;
640     snap->setCOM(com);
641     }
642     return snap->getCOM();
643     }
644 chuckv 1666
645 gezelter 1782 /**
646     * Returns center of mass and center of mass velocity in one
647     * function call.
648     */
649     void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
650     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
651 gezelter 2
652 gezelter 1782 if (!(snap->hasCOM && snap->hasCOMvel)) {
653 tim 541
654 gezelter 1782 SimInfo::MoleculeIterator i;
655     Molecule* mol;
656    
657     RealType totalMass(0.0);
658    
659     com = 0.0;
660     comVel = 0.0;
661    
662     for (mol = info_->beginMolecule(i); mol != NULL;
663     mol = info_->nextMolecule(i)) {
664     RealType mass = mol->getMass();
665     totalMass += mass;
666     com += mass * mol->getCom();
667     comVel += mass * mol->getComVel();
668     }
669    
670     #ifdef IS_MPI
671 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &totalMass, 1, MPI_REALTYPE,
672     MPI_SUM, MPI_COMM_WORLD);
673     MPI_Allreduce(MPI_IN_PLACE, com.getArrayPointer(), 3,
674     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
675     MPI_Allreduce(MPI_IN_PLACE, comVel.getArrayPointer(), 3,
676     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
677 gezelter 1782 #endif
678    
679     com /= totalMass;
680     comVel /= totalMass;
681     snap->setCOM(com);
682     snap->setCOMvel(comVel);
683     }
684     com = snap->getCOM();
685     comVel = snap->getCOMvel();
686     return;
687     }
688    
689     /**
690 gezelter 1879 * \brief Return inertia tensor for entire system and angular momentum
691     * Vector.
692 gezelter 1782 *
693     *
694     *
695     * [ Ixx -Ixy -Ixz ]
696     * I =| -Iyx Iyy -Iyz |
697     * [ -Izx -Iyz Izz ]
698     */
699     void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
700     Vector3d &angularMomentum){
701    
702     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
703    
704     if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
705    
706     RealType xx = 0.0;
707     RealType yy = 0.0;
708     RealType zz = 0.0;
709     RealType xy = 0.0;
710     RealType xz = 0.0;
711     RealType yz = 0.0;
712     Vector3d com(0.0);
713     Vector3d comVel(0.0);
714    
715     getComAll(com, comVel);
716    
717     SimInfo::MoleculeIterator i;
718     Molecule* mol;
719    
720     Vector3d thisq(0.0);
721     Vector3d thisv(0.0);
722    
723     RealType thisMass = 0.0;
724    
725     for (mol = info_->beginMolecule(i); mol != NULL;
726     mol = info_->nextMolecule(i)) {
727    
728     thisq = mol->getCom()-com;
729     thisv = mol->getComVel()-comVel;
730     thisMass = mol->getMass();
731     // Compute moment of intertia coefficients.
732     xx += thisq[0]*thisq[0]*thisMass;
733     yy += thisq[1]*thisq[1]*thisMass;
734     zz += thisq[2]*thisq[2]*thisMass;
735    
736     // compute products of intertia
737     xy += thisq[0]*thisq[1]*thisMass;
738     xz += thisq[0]*thisq[2]*thisMass;
739     yz += thisq[1]*thisq[2]*thisMass;
740    
741     angularMomentum += cross( thisq, thisv ) * thisMass;
742     }
743    
744     inertiaTensor(0,0) = yy + zz;
745     inertiaTensor(0,1) = -xy;
746     inertiaTensor(0,2) = -xz;
747     inertiaTensor(1,0) = -xy;
748     inertiaTensor(1,1) = xx + zz;
749     inertiaTensor(1,2) = -yz;
750     inertiaTensor(2,0) = -xz;
751     inertiaTensor(2,1) = -yz;
752     inertiaTensor(2,2) = xx + yy;
753    
754     #ifdef IS_MPI
755 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, inertiaTensor.getArrayPointer(),
756     9, MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
757     MPI_Allreduce(MPI_IN_PLACE,
758     angularMomentum.getArrayPointer(), 3,
759     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
760 gezelter 1782 #endif
761    
762     snap->setCOMw(angularMomentum);
763     snap->setInertiaTensor(inertiaTensor);
764     }
765    
766     angularMomentum = snap->getCOMw();
767     inertiaTensor = snap->getInertiaTensor();
768    
769     return;
770     }
771    
772 gezelter 1879
773     Mat3x3d Thermo::getBoundingBox(){
774    
775     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
776    
777     if (!(snap->hasBoundingBox)) {
778    
779     SimInfo::MoleculeIterator i;
780     Molecule::RigidBodyIterator ri;
781     Molecule::AtomIterator ai;
782     Molecule* mol;
783     RigidBody* rb;
784     Atom* atom;
785     Vector3d pos, bMax, bMin;
786     int index = 0;
787    
788     for (mol = info_->beginMolecule(i); mol != NULL;
789     mol = info_->nextMolecule(i)) {
790    
791     //change the positions of atoms which belong to the rigidbodies
792     for (rb = mol->beginRigidBody(ri); rb != NULL;
793     rb = mol->nextRigidBody(ri)) {
794     rb->updateAtoms();
795     }
796    
797     for(atom = mol->beginAtom(ai); atom != NULL;
798     atom = mol->nextAtom(ai)) {
799    
800     pos = atom->getPos();
801    
802     if (index == 0) {
803     bMax = pos;
804     bMin = pos;
805     } else {
806     for (int i = 0; i < 3; i++) {
807     bMax[i] = max(bMax[i], pos[i]);
808     bMin[i] = min(bMin[i], pos[i]);
809     }
810     }
811     index++;
812     }
813     }
814    
815     #ifdef IS_MPI
816 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &bMax[0], 3, MPI_REALTYPE,
817     MPI_MAX, MPI_COMM_WORLD);
818 gezelter 1879
819 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE, &bMin[0], 3, MPI_REALTYPE,
820     MPI_MIN, MPI_COMM_WORLD);
821 gezelter 1879 #endif
822     Mat3x3d bBox = Mat3x3d(0.0);
823     for (int i = 0; i < 3; i++) {
824     bBox(i,i) = bMax[i] - bMin[i];
825     }
826     snap->setBoundingBox(bBox);
827     }
828    
829     return snap->getBoundingBox();
830     }
831    
832    
833 gezelter 1782 // Returns the angular momentum of the system
834     Vector3d Thermo::getAngularMomentum(){
835     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
836    
837     if (!snap->hasCOMw) {
838    
839     Vector3d com(0.0);
840     Vector3d comVel(0.0);
841     Vector3d angularMomentum(0.0);
842    
843     getComAll(com, comVel);
844    
845     SimInfo::MoleculeIterator i;
846     Molecule* mol;
847    
848     Vector3d thisr(0.0);
849     Vector3d thisp(0.0);
850    
851     RealType thisMass;
852    
853     for (mol = info_->beginMolecule(i); mol != NULL;
854     mol = info_->nextMolecule(i)) {
855     thisMass = mol->getMass();
856     thisr = mol->getCom() - com;
857     thisp = (mol->getComVel() - comVel) * thisMass;
858    
859     angularMomentum += cross( thisr, thisp );
860     }
861    
862     #ifdef IS_MPI
863 gezelter 1969 MPI_Allreduce(MPI_IN_PLACE,
864     angularMomentum.getArrayPointer(), 3,
865     MPI_REALTYPE, MPI_SUM, MPI_COMM_WORLD);
866 gezelter 1782 #endif
867    
868     snap->setCOMw(angularMomentum);
869     }
870    
871     return snap->getCOMw();
872     }
873    
874    
875     /**
876     * Returns the Volume of the system based on a ellipsoid with
877     * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
878     * where R_i are related to the principle inertia moments
879     * R_i = sqrt(C*I_i/N), this reduces to
880     * V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
881     * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
882     */
883     RealType Thermo::getGyrationalVolume(){
884     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
885    
886     if (!snap->hasGyrationalVolume) {
887    
888     Mat3x3d intTensor;
889     RealType det;
890     Vector3d dummyAngMom;
891     RealType sysconstants;
892     RealType geomCnst;
893     RealType volume;
894    
895     geomCnst = 3.0/2.0;
896     /* Get the inertial tensor and angular momentum for free*/
897     getInertiaTensor(intTensor, dummyAngMom);
898    
899     det = intTensor.determinant();
900     sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
901     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
902    
903     snap->setGyrationalVolume(volume);
904     }
905     return snap->getGyrationalVolume();
906     }
907    
908     void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
909     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
910    
911     if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
912    
913     Mat3x3d intTensor;
914     Vector3d dummyAngMom;
915     RealType sysconstants;
916     RealType geomCnst;
917    
918     geomCnst = 3.0/2.0;
919     /* Get the inertia tensor and angular momentum for free*/
920     this->getInertiaTensor(intTensor, dummyAngMom);
921    
922     detI = intTensor.determinant();
923     sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
924     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
925     snap->setGyrationalVolume(volume);
926     } else {
927     volume = snap->getGyrationalVolume();
928     detI = snap->getInertiaTensor().determinant();
929     }
930     return;
931     }
932    
933     RealType Thermo::getTaggedAtomPairDistance(){
934     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
935 gezelter 1291 Globals* simParams = info_->getSimParams();
936 gezelter 1782
937     if (simParams->haveTaggedAtomPair() &&
938 gezelter 1291 simParams->havePrintTaggedPairDistance()) {
939     if ( simParams->getPrintTaggedPairDistance()) {
940 gezelter 1782
941     pair<int, int> tap = simParams->getTaggedAtomPair();
942 gezelter 1291 Vector3d pos1, pos2, rab;
943 gezelter 1782
944     #ifdef IS_MPI
945     int mol1 = info_->getGlobalMolMembership(tap.first);
946     int mol2 = info_->getGlobalMolMembership(tap.second);
947 gezelter 1291
948     int proc1 = info_->getMolToProc(mol1);
949     int proc2 = info_->getMolToProc(mol2);
950    
951 gezelter 1782 RealType data[3];
952 gezelter 1291 if (proc1 == worldRank) {
953     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
954     pos1 = sd1->getPos();
955     data[0] = pos1.x();
956     data[1] = pos1.y();
957 gezelter 1782 data[2] = pos1.z();
958 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
959 gezelter 1291 } else {
960 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
961 gezelter 1291 pos1 = Vector3d(data);
962     }
963 chuckv 1292
964 gezelter 1291 if (proc2 == worldRank) {
965     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
966     pos2 = sd2->getPos();
967     data[0] = pos2.x();
968     data[1] = pos2.y();
969 gezelter 1796 data[2] = pos2.z();
970 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
971 gezelter 1291 } else {
972 gezelter 1969 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
973 gezelter 1291 pos2 = Vector3d(data);
974     }
975     #else
976     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
977     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
978     pos1 = at1->getPos();
979     pos2 = at2->getPos();
980 gezelter 1782 #endif
981 gezelter 1291 rab = pos2 - pos1;
982     currSnapshot->wrapVector(rab);
983 gezelter 1782 return rab.length();
984 gezelter 1291 }
985 gezelter 1782 return 0.0;
986 gezelter 1291 }
987 gezelter 1782 return 0.0;
988 gezelter 507 }
989 gezelter 2
990 gezelter 1782 RealType Thermo::getHullVolume(){
991 gezelter 1879 #ifdef HAVE_QHULL
992 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
993     if (!snap->hasHullVolume) {
994     Hull* surfaceMesh_;
995 gezelter 1879
996 gezelter 1782 Globals* simParams = info_->getSimParams();
997     const std::string ht = simParams->getHULL_Method();
998    
999     if (ht == "Convex") {
1000     surfaceMesh_ = new ConvexHull();
1001     } else if (ht == "AlphaShape") {
1002     surfaceMesh_ = new AlphaHull(simParams->getAlpha());
1003     } else {
1004     return 0.0;
1005     }
1006    
1007     // Build a vector of stunt doubles to determine if they are
1008     // surface atoms
1009     std::vector<StuntDouble*> localSites_;
1010     Molecule* mol;
1011     StuntDouble* sd;
1012     SimInfo::MoleculeIterator i;
1013     Molecule::IntegrableObjectIterator j;
1014    
1015     for (mol = info_->beginMolecule(i); mol != NULL;
1016     mol = info_->nextMolecule(i)) {
1017     for (sd = mol->beginIntegrableObject(j);
1018     sd != NULL;
1019     sd = mol->nextIntegrableObject(j)) {
1020     localSites_.push_back(sd);
1021 jmichalk 1604 }
1022 gezelter 1782 }
1023    
1024     // Compute surface Mesh
1025     surfaceMesh_->computeHull(localSites_);
1026     snap->setHullVolume(surfaceMesh_->getVolume());
1027 gezelter 1879
1028     delete surfaceMesh_;
1029 jmichalk 1604 }
1030 gezelter 1879
1031 gezelter 1782 return snap->getHullVolume();
1032 chuckv 1666 #else
1033 gezelter 1782 return 0.0;
1034 chuckv 1638 #endif
1035 gezelter 1782 }
1036 gezelter 1879
1037    
1038 gezelter 1782 }

Properties

Name Value
svn:keywords Author Id Revision Date