1 |
gezelter |
2 |
#include <math.h> |
2 |
|
|
#include <iostream> |
3 |
|
|
using namespace std; |
4 |
|
|
|
5 |
|
|
#ifdef IS_MPI |
6 |
|
|
#include <mpi.h> |
7 |
|
|
#endif //is_mpi |
8 |
|
|
|
9 |
|
|
#include "Thermo.hpp" |
10 |
|
|
#include "SRI.hpp" |
11 |
|
|
#include "Integrator.hpp" |
12 |
|
|
#include "simError.h" |
13 |
|
|
#include "MatVec3.h" |
14 |
|
|
|
15 |
|
|
#ifdef IS_MPI |
16 |
|
|
#define __C |
17 |
|
|
#include "mpiSimulation.hpp" |
18 |
|
|
#endif // is_mpi |
19 |
|
|
|
20 |
|
|
inline double roundMe( double x ){ |
21 |
|
|
return ( x >= 0 ) ? floor( x + 0.5 ) : ceil( x - 0.5 ); |
22 |
|
|
} |
23 |
|
|
|
24 |
|
|
Thermo::Thermo( SimInfo* the_info ) { |
25 |
|
|
info = the_info; |
26 |
|
|
int baseSeed = the_info->getSeed(); |
27 |
|
|
|
28 |
|
|
gaussStream = new gaussianSPRNG( baseSeed ); |
29 |
|
|
} |
30 |
|
|
|
31 |
|
|
Thermo::~Thermo(){ |
32 |
|
|
delete gaussStream; |
33 |
|
|
} |
34 |
|
|
|
35 |
|
|
double Thermo::getKinetic(){ |
36 |
|
|
|
37 |
|
|
const double e_convert = 4.184E-4; // convert kcal/mol -> (amu A^2)/fs^2 |
38 |
|
|
double kinetic; |
39 |
|
|
double amass; |
40 |
|
|
double aVel[3], aJ[3], I[3][3]; |
41 |
|
|
int i, j, k, kl; |
42 |
|
|
|
43 |
|
|
double kinetic_global; |
44 |
|
|
vector<StuntDouble *> integrableObjects = info->integrableObjects; |
45 |
|
|
|
46 |
|
|
kinetic = 0.0; |
47 |
|
|
kinetic_global = 0.0; |
48 |
|
|
|
49 |
|
|
for (kl=0; kl<integrableObjects.size(); kl++) { |
50 |
|
|
integrableObjects[kl]->getVel(aVel); |
51 |
|
|
amass = integrableObjects[kl]->getMass(); |
52 |
|
|
|
53 |
|
|
for(j=0; j<3; j++) |
54 |
|
|
kinetic += amass*aVel[j]*aVel[j]; |
55 |
|
|
|
56 |
|
|
if (integrableObjects[kl]->isDirectional()){ |
57 |
|
|
|
58 |
|
|
integrableObjects[kl]->getJ( aJ ); |
59 |
|
|
integrableObjects[kl]->getI( I ); |
60 |
|
|
|
61 |
|
|
if (integrableObjects[kl]->isLinear()) { |
62 |
|
|
i = integrableObjects[kl]->linearAxis(); |
63 |
|
|
j = (i+1)%3; |
64 |
|
|
k = (i+2)%3; |
65 |
|
|
kinetic += aJ[j]*aJ[j]/I[j][j] + aJ[k]*aJ[k]/I[k][k]; |
66 |
|
|
} else { |
67 |
|
|
for (j=0; j<3; j++) |
68 |
|
|
kinetic += aJ[j]*aJ[j] / I[j][j]; |
69 |
|
|
} |
70 |
|
|
} |
71 |
|
|
} |
72 |
|
|
#ifdef IS_MPI |
73 |
|
|
MPI_Allreduce(&kinetic,&kinetic_global,1,MPI_DOUBLE, |
74 |
|
|
MPI_SUM, MPI_COMM_WORLD); |
75 |
|
|
kinetic = kinetic_global; |
76 |
|
|
#endif //is_mpi |
77 |
|
|
|
78 |
|
|
kinetic = kinetic * 0.5 / e_convert; |
79 |
|
|
|
80 |
|
|
return kinetic; |
81 |
|
|
} |
82 |
|
|
|
83 |
|
|
double Thermo::getPotential(){ |
84 |
|
|
|
85 |
|
|
double potential_local; |
86 |
|
|
double potential; |
87 |
|
|
int el, nSRI; |
88 |
|
|
Molecule* molecules; |
89 |
|
|
|
90 |
|
|
molecules = info->molecules; |
91 |
|
|
nSRI = info->n_SRI; |
92 |
|
|
|
93 |
|
|
potential_local = 0.0; |
94 |
|
|
potential = 0.0; |
95 |
|
|
potential_local += info->lrPot; |
96 |
|
|
|
97 |
|
|
for( el=0; el<info->n_mol; el++ ){ |
98 |
|
|
potential_local += molecules[el].getPotential(); |
99 |
|
|
} |
100 |
|
|
|
101 |
|
|
// Get total potential for entire system from MPI. |
102 |
|
|
#ifdef IS_MPI |
103 |
|
|
MPI_Allreduce(&potential_local,&potential,1,MPI_DOUBLE, |
104 |
|
|
MPI_SUM, MPI_COMM_WORLD); |
105 |
|
|
#else |
106 |
|
|
potential = potential_local; |
107 |
|
|
#endif // is_mpi |
108 |
|
|
|
109 |
|
|
return potential; |
110 |
|
|
} |
111 |
|
|
|
112 |
|
|
double Thermo::getTotalE(){ |
113 |
|
|
|
114 |
|
|
double total; |
115 |
|
|
|
116 |
|
|
total = this->getKinetic() + this->getPotential(); |
117 |
|
|
return total; |
118 |
|
|
} |
119 |
|
|
|
120 |
|
|
double Thermo::getTemperature(){ |
121 |
|
|
|
122 |
|
|
const double kb = 1.9872156E-3; // boltzman's constant in kcal/(mol K) |
123 |
|
|
double temperature; |
124 |
|
|
|
125 |
|
|
temperature = ( 2.0 * this->getKinetic() ) / ((double)info->ndf * kb ); |
126 |
|
|
return temperature; |
127 |
|
|
} |
128 |
|
|
|
129 |
|
|
double Thermo::getVolume() { |
130 |
|
|
|
131 |
|
|
return info->boxVol; |
132 |
|
|
} |
133 |
|
|
|
134 |
|
|
double Thermo::getPressure() { |
135 |
|
|
|
136 |
|
|
// Relies on the calculation of the full molecular pressure tensor |
137 |
|
|
|
138 |
|
|
const double p_convert = 1.63882576e8; |
139 |
|
|
double press[3][3]; |
140 |
|
|
double pressure; |
141 |
|
|
|
142 |
|
|
this->getPressureTensor(press); |
143 |
|
|
|
144 |
|
|
pressure = p_convert * (press[0][0] + press[1][1] + press[2][2]) / 3.0; |
145 |
|
|
|
146 |
|
|
return pressure; |
147 |
|
|
} |
148 |
|
|
|
149 |
|
|
double Thermo::getPressureX() { |
150 |
|
|
|
151 |
|
|
// Relies on the calculation of the full molecular pressure tensor |
152 |
|
|
|
153 |
|
|
const double p_convert = 1.63882576e8; |
154 |
|
|
double press[3][3]; |
155 |
|
|
double pressureX; |
156 |
|
|
|
157 |
|
|
this->getPressureTensor(press); |
158 |
|
|
|
159 |
|
|
pressureX = p_convert * press[0][0]; |
160 |
|
|
|
161 |
|
|
return pressureX; |
162 |
|
|
} |
163 |
|
|
|
164 |
|
|
double Thermo::getPressureY() { |
165 |
|
|
|
166 |
|
|
// Relies on the calculation of the full molecular pressure tensor |
167 |
|
|
|
168 |
|
|
const double p_convert = 1.63882576e8; |
169 |
|
|
double press[3][3]; |
170 |
|
|
double pressureY; |
171 |
|
|
|
172 |
|
|
this->getPressureTensor(press); |
173 |
|
|
|
174 |
|
|
pressureY = p_convert * press[1][1]; |
175 |
|
|
|
176 |
|
|
return pressureY; |
177 |
|
|
} |
178 |
|
|
|
179 |
|
|
double Thermo::getPressureZ() { |
180 |
|
|
|
181 |
|
|
// Relies on the calculation of the full molecular pressure tensor |
182 |
|
|
|
183 |
|
|
const double p_convert = 1.63882576e8; |
184 |
|
|
double press[3][3]; |
185 |
|
|
double pressureZ; |
186 |
|
|
|
187 |
|
|
this->getPressureTensor(press); |
188 |
|
|
|
189 |
|
|
pressureZ = p_convert * press[2][2]; |
190 |
|
|
|
191 |
|
|
return pressureZ; |
192 |
|
|
} |
193 |
|
|
|
194 |
|
|
|
195 |
|
|
void Thermo::getPressureTensor(double press[3][3]){ |
196 |
|
|
// returns pressure tensor in units amu*fs^-2*Ang^-1 |
197 |
|
|
// routine derived via viral theorem description in: |
198 |
|
|
// Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322 |
199 |
|
|
|
200 |
|
|
const double e_convert = 4.184e-4; |
201 |
|
|
|
202 |
|
|
double molmass, volume; |
203 |
|
|
double vcom[3]; |
204 |
|
|
double p_local[9], p_global[9]; |
205 |
|
|
int i, j, k; |
206 |
|
|
|
207 |
|
|
for (i=0; i < 9; i++) { |
208 |
|
|
p_local[i] = 0.0; |
209 |
|
|
p_global[i] = 0.0; |
210 |
|
|
} |
211 |
|
|
|
212 |
|
|
// use velocities of integrableObjects and their masses: |
213 |
|
|
|
214 |
|
|
for (i=0; i < info->integrableObjects.size(); i++) { |
215 |
|
|
|
216 |
|
|
molmass = info->integrableObjects[i]->getMass(); |
217 |
|
|
|
218 |
|
|
info->integrableObjects[i]->getVel(vcom); |
219 |
|
|
|
220 |
|
|
p_local[0] += molmass * (vcom[0] * vcom[0]); |
221 |
|
|
p_local[1] += molmass * (vcom[0] * vcom[1]); |
222 |
|
|
p_local[2] += molmass * (vcom[0] * vcom[2]); |
223 |
|
|
p_local[3] += molmass * (vcom[1] * vcom[0]); |
224 |
|
|
p_local[4] += molmass * (vcom[1] * vcom[1]); |
225 |
|
|
p_local[5] += molmass * (vcom[1] * vcom[2]); |
226 |
|
|
p_local[6] += molmass * (vcom[2] * vcom[0]); |
227 |
|
|
p_local[7] += molmass * (vcom[2] * vcom[1]); |
228 |
|
|
p_local[8] += molmass * (vcom[2] * vcom[2]); |
229 |
|
|
|
230 |
|
|
} |
231 |
|
|
|
232 |
|
|
// Get total for entire system from MPI. |
233 |
|
|
|
234 |
|
|
#ifdef IS_MPI |
235 |
|
|
MPI_Allreduce(p_local,p_global,9,MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD); |
236 |
|
|
#else |
237 |
|
|
for (i=0; i<9; i++) { |
238 |
|
|
p_global[i] = p_local[i]; |
239 |
|
|
} |
240 |
|
|
#endif // is_mpi |
241 |
|
|
|
242 |
|
|
volume = this->getVolume(); |
243 |
|
|
|
244 |
|
|
|
245 |
|
|
|
246 |
|
|
for(i = 0; i < 3; i++) { |
247 |
|
|
for (j = 0; j < 3; j++) { |
248 |
|
|
k = 3*i + j; |
249 |
|
|
press[i][j] = (p_global[k] + info->tau[k]*e_convert) / volume; |
250 |
|
|
} |
251 |
|
|
} |
252 |
|
|
} |
253 |
|
|
|
254 |
|
|
void Thermo::velocitize() { |
255 |
|
|
|
256 |
|
|
double aVel[3], aJ[3], I[3][3]; |
257 |
|
|
int i, j, l, m, n, vr, vd; // velocity randomizer loop counters |
258 |
|
|
double vdrift[3]; |
259 |
|
|
double vbar; |
260 |
|
|
const double kb = 8.31451e-7; // kb in amu, angstroms, fs, etc. |
261 |
|
|
double av2; |
262 |
|
|
double kebar; |
263 |
|
|
double temperature; |
264 |
|
|
int nobj; |
265 |
|
|
|
266 |
|
|
if (!info->have_target_temp) { |
267 |
|
|
sprintf( painCave.errMsg, |
268 |
|
|
"You can't resample the velocities without a targetTemp!\n" |
269 |
|
|
); |
270 |
|
|
painCave.isFatal = 1; |
271 |
|
|
painCave.severity = OOPSE_ERROR; |
272 |
|
|
simError(); |
273 |
|
|
return; |
274 |
|
|
} |
275 |
|
|
|
276 |
|
|
nobj = info->integrableObjects.size(); |
277 |
|
|
|
278 |
|
|
temperature = info->target_temp; |
279 |
|
|
|
280 |
|
|
kebar = kb * temperature * (double)info->ndfRaw / |
281 |
|
|
( 2.0 * (double)info->ndf ); |
282 |
|
|
|
283 |
|
|
for(vr = 0; vr < nobj; vr++){ |
284 |
|
|
|
285 |
|
|
// uses equipartition theory to solve for vbar in angstrom/fs |
286 |
|
|
|
287 |
|
|
av2 = 2.0 * kebar / info->integrableObjects[vr]->getMass(); |
288 |
|
|
vbar = sqrt( av2 ); |
289 |
|
|
|
290 |
|
|
// picks random velocities from a gaussian distribution |
291 |
|
|
// centered on vbar |
292 |
|
|
|
293 |
|
|
for (j=0; j<3; j++) |
294 |
|
|
aVel[j] = vbar * gaussStream->getGaussian(); |
295 |
|
|
|
296 |
|
|
info->integrableObjects[vr]->setVel( aVel ); |
297 |
|
|
|
298 |
|
|
if(info->integrableObjects[vr]->isDirectional()){ |
299 |
|
|
|
300 |
|
|
info->integrableObjects[vr]->getI( I ); |
301 |
|
|
|
302 |
|
|
if (info->integrableObjects[vr]->isLinear()) { |
303 |
|
|
|
304 |
|
|
l= info->integrableObjects[vr]->linearAxis(); |
305 |
|
|
m = (l+1)%3; |
306 |
|
|
n = (l+2)%3; |
307 |
|
|
|
308 |
|
|
aJ[l] = 0.0; |
309 |
|
|
vbar = sqrt( 2.0 * kebar * I[m][m] ); |
310 |
|
|
aJ[m] = vbar * gaussStream->getGaussian(); |
311 |
|
|
vbar = sqrt( 2.0 * kebar * I[n][n] ); |
312 |
|
|
aJ[n] = vbar * gaussStream->getGaussian(); |
313 |
|
|
|
314 |
|
|
} else { |
315 |
|
|
for (j = 0 ; j < 3; j++) { |
316 |
|
|
vbar = sqrt( 2.0 * kebar * I[j][j] ); |
317 |
|
|
aJ[j] = vbar * gaussStream->getGaussian(); |
318 |
|
|
} |
319 |
|
|
} // else isLinear |
320 |
|
|
|
321 |
|
|
info->integrableObjects[vr]->setJ( aJ ); |
322 |
|
|
|
323 |
|
|
}//isDirectional |
324 |
|
|
|
325 |
|
|
} |
326 |
|
|
|
327 |
|
|
// Get the Center of Mass drift velocity. |
328 |
|
|
|
329 |
|
|
getCOMVel(vdrift); |
330 |
|
|
|
331 |
|
|
// Corrects for the center of mass drift. |
332 |
|
|
// sums all the momentum and divides by total mass. |
333 |
|
|
|
334 |
|
|
for(vd = 0; vd < nobj; vd++){ |
335 |
|
|
|
336 |
|
|
info->integrableObjects[vd]->getVel(aVel); |
337 |
|
|
|
338 |
|
|
for (j=0; j < 3; j++) |
339 |
|
|
aVel[j] -= vdrift[j]; |
340 |
|
|
|
341 |
|
|
info->integrableObjects[vd]->setVel( aVel ); |
342 |
|
|
} |
343 |
|
|
|
344 |
|
|
} |
345 |
|
|
|
346 |
|
|
void Thermo::getCOMVel(double vdrift[3]){ |
347 |
|
|
|
348 |
|
|
double mtot, mtot_local; |
349 |
|
|
double aVel[3], amass; |
350 |
|
|
double vdrift_local[3]; |
351 |
|
|
int vd, j; |
352 |
|
|
int nobj; |
353 |
|
|
|
354 |
|
|
nobj = info->integrableObjects.size(); |
355 |
|
|
|
356 |
|
|
mtot_local = 0.0; |
357 |
|
|
vdrift_local[0] = 0.0; |
358 |
|
|
vdrift_local[1] = 0.0; |
359 |
|
|
vdrift_local[2] = 0.0; |
360 |
|
|
|
361 |
|
|
for(vd = 0; vd < nobj; vd++){ |
362 |
|
|
|
363 |
|
|
amass = info->integrableObjects[vd]->getMass(); |
364 |
|
|
info->integrableObjects[vd]->getVel( aVel ); |
365 |
|
|
|
366 |
|
|
for(j = 0; j < 3; j++) |
367 |
|
|
vdrift_local[j] += aVel[j] * amass; |
368 |
|
|
|
369 |
|
|
mtot_local += amass; |
370 |
|
|
} |
371 |
|
|
|
372 |
|
|
#ifdef IS_MPI |
373 |
|
|
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
374 |
|
|
MPI_Allreduce(vdrift_local,vdrift,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
375 |
|
|
#else |
376 |
|
|
mtot = mtot_local; |
377 |
|
|
for(vd = 0; vd < 3; vd++) { |
378 |
|
|
vdrift[vd] = vdrift_local[vd]; |
379 |
|
|
} |
380 |
|
|
#endif |
381 |
|
|
|
382 |
|
|
for (vd = 0; vd < 3; vd++) { |
383 |
|
|
vdrift[vd] = vdrift[vd] / mtot; |
384 |
|
|
} |
385 |
|
|
|
386 |
|
|
} |
387 |
|
|
|
388 |
|
|
void Thermo::getCOM(double COM[3]){ |
389 |
|
|
|
390 |
|
|
double mtot, mtot_local; |
391 |
|
|
double aPos[3], amass; |
392 |
|
|
double COM_local[3]; |
393 |
|
|
int i, j; |
394 |
|
|
int nobj; |
395 |
|
|
|
396 |
|
|
mtot_local = 0.0; |
397 |
|
|
COM_local[0] = 0.0; |
398 |
|
|
COM_local[1] = 0.0; |
399 |
|
|
COM_local[2] = 0.0; |
400 |
|
|
|
401 |
|
|
nobj = info->integrableObjects.size(); |
402 |
|
|
for(i = 0; i < nobj; i++){ |
403 |
|
|
|
404 |
|
|
amass = info->integrableObjects[i]->getMass(); |
405 |
|
|
info->integrableObjects[i]->getPos( aPos ); |
406 |
|
|
|
407 |
|
|
for(j = 0; j < 3; j++) |
408 |
|
|
COM_local[j] += aPos[j] * amass; |
409 |
|
|
|
410 |
|
|
mtot_local += amass; |
411 |
|
|
} |
412 |
|
|
|
413 |
|
|
#ifdef IS_MPI |
414 |
|
|
MPI_Allreduce(&mtot_local,&mtot,1,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
415 |
|
|
MPI_Allreduce(COM_local,COM,3,MPI_DOUBLE,MPI_SUM, MPI_COMM_WORLD); |
416 |
|
|
#else |
417 |
|
|
mtot = mtot_local; |
418 |
|
|
for(i = 0; i < 3; i++) { |
419 |
|
|
COM[i] = COM_local[i]; |
420 |
|
|
} |
421 |
|
|
#endif |
422 |
|
|
|
423 |
|
|
for (i = 0; i < 3; i++) { |
424 |
|
|
COM[i] = COM[i] / mtot; |
425 |
|
|
} |
426 |
|
|
} |
427 |
|
|
|
428 |
|
|
void Thermo::removeCOMdrift() { |
429 |
|
|
double vdrift[3], aVel[3]; |
430 |
|
|
int vd, j, nobj; |
431 |
|
|
|
432 |
|
|
nobj = info->integrableObjects.size(); |
433 |
|
|
|
434 |
|
|
// Get the Center of Mass drift velocity. |
435 |
|
|
|
436 |
|
|
getCOMVel(vdrift); |
437 |
|
|
|
438 |
|
|
// Corrects for the center of mass drift. |
439 |
|
|
// sums all the momentum and divides by total mass. |
440 |
|
|
|
441 |
|
|
for(vd = 0; vd < nobj; vd++){ |
442 |
|
|
|
443 |
|
|
info->integrableObjects[vd]->getVel(aVel); |
444 |
|
|
|
445 |
|
|
for (j=0; j < 3; j++) |
446 |
|
|
aVel[j] -= vdrift[j]; |
447 |
|
|
|
448 |
|
|
info->integrableObjects[vd]->setVel( aVel ); |
449 |
|
|
} |
450 |
|
|
} |