ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Thermo.cpp
Revision: 1792
Committed: Fri Aug 31 17:29:35 2012 UTC (12 years, 8 months ago) by gezelter
File size: 27958 byte(s)
Log Message:
Fixed some compilation warnings on the Linux side of things.

File Contents

# User Rev Content
1 gezelter 507 /*
2 gezelter 246 * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3     *
4     * The University of Notre Dame grants you ("Licensee") a
5     * non-exclusive, royalty free, license to use, modify and
6     * redistribute this software in source and binary code form, provided
7     * that the following conditions are met:
8     *
9 gezelter 1390 * 1. Redistributions of source code must retain the above copyright
10 gezelter 246 * notice, this list of conditions and the following disclaimer.
11     *
12 gezelter 1390 * 2. Redistributions in binary form must reproduce the above copyright
13 gezelter 246 * notice, this list of conditions and the following disclaimer in the
14     * documentation and/or other materials provided with the
15     * distribution.
16     *
17     * This software is provided "AS IS," without a warranty of any
18     * kind. All express or implied conditions, representations and
19     * warranties, including any implied warranty of merchantability,
20     * fitness for a particular purpose or non-infringement, are hereby
21     * excluded. The University of Notre Dame and its licensors shall not
22     * be liable for any damages suffered by licensee as a result of
23     * using, modifying or distributing the software or its
24     * derivatives. In no event will the University of Notre Dame or its
25     * licensors be liable for any lost revenue, profit or data, or for
26     * direct, indirect, special, consequential, incidental or punitive
27     * damages, however caused and regardless of the theory of liability,
28     * arising out of the use of or inability to use software, even if the
29     * University of Notre Dame has been advised of the possibility of
30     * such damages.
31 gezelter 1390 *
32     * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33     * research, please cite the appropriate papers when you publish your
34     * work. Good starting points are:
35 gezelter 1782 *
36     * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37     * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38     * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 24107 (2008).
39     * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40     * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 gezelter 246 */
42 gezelter 1782
43 gezelter 2 #include <math.h>
44     #include <iostream>
45    
46     #ifdef IS_MPI
47     #include <mpi.h>
48     #endif //is_mpi
49    
50 tim 3 #include "brains/Thermo.hpp"
51 gezelter 246 #include "primitives/Molecule.hpp"
52 tim 3 #include "utils/simError.h"
53 gezelter 1390 #include "utils/PhysicalConstants.hpp"
54 gezelter 1782 #include "types/FixedChargeAdapter.hpp"
55     #include "types/FluctuatingChargeAdapter.hpp"
56     #include "types/MultipoleAdapter.hpp"
57     #ifdef HAVE_QHULL
58     #include "math/ConvexHull.hpp"
59     #include "math/AlphaHull.hpp"
60     #endif
61 gezelter 2
62 gezelter 1782 using namespace std;
63 gezelter 1390 namespace OpenMD {
64 gezelter 2
65 gezelter 1782 RealType Thermo::getTranslationalKinetic() {
66     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
67 chuckv 1666
68 gezelter 1782 if (!snap->hasTranslationalKineticEnergy) {
69     SimInfo::MoleculeIterator miter;
70     vector<StuntDouble*>::iterator iiter;
71     Molecule* mol;
72     StuntDouble* sd;
73     Vector3d vel;
74     RealType mass;
75     RealType kinetic(0.0);
76    
77     for (mol = info_->beginMolecule(miter); mol != NULL;
78     mol = info_->nextMolecule(miter)) {
79    
80     for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
81     sd = mol->nextIntegrableObject(iiter)) {
82    
83     mass = sd->getMass();
84     vel = sd->getVel();
85    
86     kinetic += mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
87    
88     }
89     }
90    
91     #ifdef IS_MPI
92     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
93     MPI::SUM);
94     #endif
95    
96     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
97    
98    
99     snap->setTranslationalKineticEnergy(kinetic);
100     }
101     return snap->getTranslationalKineticEnergy();
102     }
103 gezelter 2
104 gezelter 1782 RealType Thermo::getRotationalKinetic() {
105     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
106 chuckv 1666
107 gezelter 1782 if (!snap->hasRotationalKineticEnergy) {
108     SimInfo::MoleculeIterator miter;
109     vector<StuntDouble*>::iterator iiter;
110     Molecule* mol;
111     StuntDouble* sd;
112     Vector3d angMom;
113     Mat3x3d I;
114     int i, j, k;
115     RealType kinetic(0.0);
116    
117     for (mol = info_->beginMolecule(miter); mol != NULL;
118     mol = info_->nextMolecule(miter)) {
119    
120     for (sd = mol->beginIntegrableObject(iiter); sd != NULL;
121     sd = mol->nextIntegrableObject(iiter)) {
122    
123     if (sd->isDirectional()) {
124     angMom = sd->getJ();
125     I = sd->getI();
126    
127     if (sd->isLinear()) {
128     i = sd->linearAxis();
129     j = (i + 1) % 3;
130     k = (i + 2) % 3;
131     kinetic += angMom[j] * angMom[j] / I(j, j)
132     + angMom[k] * angMom[k] / I(k, k);
133     } else {
134     kinetic += angMom[0]*angMom[0]/I(0, 0)
135     + angMom[1]*angMom[1]/I(1, 1)
136     + angMom[2]*angMom[2]/I(2, 2);
137     }
138     }
139     }
140     }
141    
142     #ifdef IS_MPI
143     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
144     MPI::SUM);
145     #endif
146    
147     kinetic = kinetic * 0.5 / PhysicalConstants::energyConvert;
148    
149     snap->setRotationalKineticEnergy(kinetic);
150     }
151     return snap->getRotationalKineticEnergy();
152     }
153 chuckv 1666
154 gezelter 1782
155 chuckv 1666
156 gezelter 1782 RealType Thermo::getKinetic() {
157     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
158    
159     if (!snap->hasKineticEnergy) {
160     RealType ke = getTranslationalKinetic() + getRotationalKinetic();
161     snap->setKineticEnergy(ke);
162 chuckv 1666 }
163 gezelter 1782 return snap->getKineticEnergy();
164 chuckv 1666 }
165    
166 gezelter 1782 RealType Thermo::getPotential() {
167 chuckv 1666
168 gezelter 1782 // ForceManager computes the potential and stores it in the
169     // Snapshot. All we have to do is report it.
170 gezelter 2
171 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
172     return snap->getPotentialEnergy();
173     }
174 gezelter 2
175 gezelter 1782 RealType Thermo::getTotalEnergy() {
176 gezelter 2
177 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
178 gezelter 2
179 gezelter 1782 if (!snap->hasTotalEnergy) {
180     snap->setTotalEnergy(this->getKinetic() + this->getPotential());
181     }
182    
183     return snap->getTotalEnergy();
184 gezelter 507 }
185 gezelter 2
186 gezelter 1782 RealType Thermo::getTemperature() {
187 gezelter 2
188 gezelter 1782 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
189 gezelter 2
190 gezelter 1782 if (!snap->hasTemperature) {
191 gezelter 2
192 gezelter 1782 RealType temperature = ( 2.0 * this->getKinetic() )
193     / (info_->getNdf()* PhysicalConstants::kb );
194 gezelter 2
195 gezelter 1782 snap->setTemperature(temperature);
196     }
197    
198     return snap->getTemperature();
199     }
200 gezelter 2
201 gezelter 1782 RealType Thermo::getElectronicTemperature() {
202     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
203 gezelter 2
204 gezelter 1782 if (!snap->hasElectronicTemperature) {
205    
206     SimInfo::MoleculeIterator miter;
207     vector<Atom*>::iterator iiter;
208     Molecule* mol;
209     Atom* atom;
210     RealType cvel;
211     RealType cmass;
212     RealType kinetic(0.0);
213     RealType eTemp;
214    
215     for (mol = info_->beginMolecule(miter); mol != NULL;
216     mol = info_->nextMolecule(miter)) {
217    
218     for (atom = mol->beginFluctuatingCharge(iiter); atom != NULL;
219     atom = mol->nextFluctuatingCharge(iiter)) {
220    
221     cmass = atom->getChargeMass();
222     cvel = atom->getFlucQVel();
223    
224     kinetic += cmass * cvel * cvel;
225    
226     }
227     }
228    
229     #ifdef IS_MPI
230     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &kinetic, 1, MPI::REALTYPE,
231     MPI::SUM);
232     #endif
233 gezelter 2
234 gezelter 1782 kinetic *= 0.5;
235     eTemp = (2.0 * kinetic) /
236     (info_->getNFluctuatingCharges() * PhysicalConstants::kb );
237    
238     snap->setElectronicTemperature(eTemp);
239     }
240    
241     return snap->getElectronicTemperature();
242 gezelter 507 }
243 gezelter 2
244    
245 gezelter 1782 RealType Thermo::getVolume() {
246     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
247     return snap->getVolume();
248 gezelter 507 }
249 gezelter 2
250 gezelter 1782 RealType Thermo::getPressure() {
251     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
252 chuckv 1666
253 gezelter 1782 if (!snap->hasPressure) {
254     // Relies on the calculation of the full molecular pressure tensor
255    
256     Mat3x3d tensor;
257     RealType pressure;
258    
259     tensor = getPressureTensor();
260    
261     pressure = PhysicalConstants::pressureConvert *
262     (tensor(0, 0) + tensor(1, 1) + tensor(2, 2)) / 3.0;
263    
264     snap->setPressure(pressure);
265     }
266    
267     return snap->getPressure();
268 gezelter 507 }
269 gezelter 2
270 gezelter 1782 Mat3x3d Thermo::getPressureTensor() {
271     // returns pressure tensor in units amu*fs^-2*Ang^-1
272     // routine derived via viral theorem description in:
273     // Paci, E. and Marchi, M. J.Phys.Chem. 1996, 100, 4314-4322
274     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
275    
276     if (!snap->hasPressureTensor) {
277    
278     Mat3x3d pressureTensor;
279     Mat3x3d p_tens(0.0);
280     RealType mass;
281     Vector3d vcom;
282    
283     SimInfo::MoleculeIterator i;
284     vector<StuntDouble*>::iterator j;
285     Molecule* mol;
286     StuntDouble* sd;
287     for (mol = info_->beginMolecule(i); mol != NULL;
288     mol = info_->nextMolecule(i)) {
289    
290     for (sd = mol->beginIntegrableObject(j); sd != NULL;
291     sd = mol->nextIntegrableObject(j)) {
292    
293     mass = sd->getMass();
294     vcom = sd->getVel();
295     p_tens += mass * outProduct(vcom, vcom);
296     }
297     }
298    
299     #ifdef IS_MPI
300     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, p_tens.getArrayPointer(), 9,
301     MPI::REALTYPE, MPI::SUM);
302     #endif
303    
304     RealType volume = this->getVolume();
305     Mat3x3d stressTensor = snap->getStressTensor();
306    
307     pressureTensor = (p_tens +
308     PhysicalConstants::energyConvert * stressTensor)/volume;
309    
310     snap->setPressureTensor(pressureTensor);
311     }
312     return snap->getPressureTensor();
313 gezelter 507 }
314 gezelter 2
315    
316    
317    
318 gezelter 1782 Vector3d Thermo::getSystemDipole() {
319     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
320 gezelter 2
321 gezelter 1782 if (!snap->hasSystemDipole) {
322     SimInfo::MoleculeIterator miter;
323     vector<Atom*>::iterator aiter;
324     Molecule* mol;
325     Atom* atom;
326     RealType charge;
327     RealType moment(0.0);
328     Vector3d ri(0.0);
329     Vector3d dipoleVector(0.0);
330     Vector3d nPos(0.0);
331     Vector3d pPos(0.0);
332     RealType nChg(0.0);
333     RealType pChg(0.0);
334     int nCount = 0;
335     int pCount = 0;
336    
337     RealType chargeToC = 1.60217733e-19;
338     RealType angstromToM = 1.0e-10;
339     RealType debyeToCm = 3.33564095198e-30;
340    
341     for (mol = info_->beginMolecule(miter); mol != NULL;
342     mol = info_->nextMolecule(miter)) {
343    
344     for (atom = mol->beginAtom(aiter); atom != NULL;
345     atom = mol->nextAtom(aiter)) {
346    
347     charge = 0.0;
348    
349     FixedChargeAdapter fca = FixedChargeAdapter(atom->getAtomType());
350     if ( fca.isFixedCharge() ) {
351     charge = fca.getCharge();
352     }
353    
354     FluctuatingChargeAdapter fqa = FluctuatingChargeAdapter(atom->getAtomType());
355     if ( fqa.isFluctuatingCharge() ) {
356     charge += atom->getFlucQPos();
357     }
358    
359     charge *= chargeToC;
360    
361     ri = atom->getPos();
362     snap->wrapVector(ri);
363     ri *= angstromToM;
364    
365     if (charge < 0.0) {
366     nPos += ri;
367     nChg -= charge;
368     nCount++;
369     } else if (charge > 0.0) {
370     pPos += ri;
371     pChg += charge;
372     pCount++;
373     }
374    
375     MultipoleAdapter ma = MultipoleAdapter(atom->getAtomType());
376     if (ma.isDipole() ) {
377     Vector3d u_i = atom->getElectroFrame().getColumn(2);
378     moment = ma.getDipoleMoment();
379     moment *= debyeToCm;
380     dipoleVector += u_i * moment;
381     }
382     }
383     }
384    
385    
386     #ifdef IS_MPI
387     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pChg, 1, MPI::REALTYPE,
388     MPI::SUM);
389     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nChg, 1, MPI::REALTYPE,
390     MPI::SUM);
391 gezelter 2
392 gezelter 1782 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &pCount, 1, MPI::INTEGER,
393     MPI::SUM);
394     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &nCount, 1, MPI::INTEGER,
395     MPI::SUM);
396 gezelter 2
397 gezelter 1782 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, pPos.getArrayPointer(), 3,
398     MPI::REALTYPE, MPI::SUM);
399     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, nPos.getArrayPointer(), 3,
400     MPI::REALTYPE, MPI::SUM);
401 gezelter 2
402 gezelter 1782 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, dipoleVector.getArrayPointer(),
403     3, MPI::REALTYPE, MPI::SUM);
404     #endif
405    
406     // first load the accumulated dipole moment (if dipoles were present)
407     Vector3d boxDipole = dipoleVector;
408     // now include the dipole moment due to charges
409     // use the lesser of the positive and negative charge totals
410     RealType chg_value = nChg <= pChg ? nChg : pChg;
411    
412     // find the average positions
413     if (pCount > 0 && nCount > 0 ) {
414     pPos /= pCount;
415     nPos /= nCount;
416     }
417    
418     // dipole is from the negative to the positive (physics notation)
419     boxDipole += (pPos - nPos) * chg_value;
420     snap->setSystemDipole(boxDipole);
421     }
422 tim 538
423 gezelter 1782 return snap->getSystemDipole();
424     }
425 tim 538
426 gezelter 1782 // Returns the Heat Flux Vector for the system
427     Vector3d Thermo::getHeatFlux(){
428     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
429     SimInfo::MoleculeIterator miter;
430     vector<StuntDouble*>::iterator iiter;
431     Molecule* mol;
432     StuntDouble* sd;
433     RigidBody::AtomIterator ai;
434     Atom* atom;
435     Vector3d vel;
436     Vector3d angMom;
437     Mat3x3d I;
438     int i;
439     int j;
440     int k;
441     RealType mass;
442 chuckv 1666
443 gezelter 1782 Vector3d x_a;
444     RealType kinetic;
445     RealType potential;
446     RealType eatom;
447     // Convective portion of the heat flux
448     Vector3d heatFluxJc = V3Zero;
449 tim 538
450 gezelter 1782 /* Calculate convective portion of the heat flux */
451     for (mol = info_->beginMolecule(miter); mol != NULL;
452     mol = info_->nextMolecule(miter)) {
453    
454     for (sd = mol->beginIntegrableObject(iiter);
455     sd != NULL;
456     sd = mol->nextIntegrableObject(iiter)) {
457    
458     mass = sd->getMass();
459     vel = sd->getVel();
460 tim 538
461 gezelter 1782 kinetic = mass * (vel[0]*vel[0] + vel[1]*vel[1] + vel[2]*vel[2]);
462    
463     if (sd->isDirectional()) {
464     angMom = sd->getJ();
465     I = sd->getI();
466 tim 538
467 gezelter 1782 if (sd->isLinear()) {
468     i = sd->linearAxis();
469     j = (i + 1) % 3;
470     k = (i + 2) % 3;
471     kinetic += angMom[j] * angMom[j] / I(j, j)
472     + angMom[k] * angMom[k] / I(k, k);
473     } else {
474     kinetic += angMom[0]*angMom[0]/I(0, 0)
475     + angMom[1]*angMom[1]/I(1, 1)
476     + angMom[2]*angMom[2]/I(2, 2);
477     }
478     }
479 tim 538
480 gezelter 1782 potential = 0.0;
481 gezelter 2
482 gezelter 1782 if (sd->isRigidBody()) {
483     RigidBody* rb = dynamic_cast<RigidBody*>(sd);
484     for (atom = rb->beginAtom(ai); atom != NULL;
485     atom = rb->nextAtom(ai)) {
486     potential += atom->getParticlePot();
487     }
488     } else {
489     potential = sd->getParticlePot();
490     }
491 gezelter 2
492 gezelter 1782 potential *= PhysicalConstants::energyConvert; // amu A^2/fs^2
493     // The potential may not be a 1/2 factor
494     eatom = (kinetic + potential)/2.0; // amu A^2/fs^2
495     heatFluxJc[0] += eatom*vel[0]; // amu A^3/fs^3
496     heatFluxJc[1] += eatom*vel[1]; // amu A^3/fs^3
497     heatFluxJc[2] += eatom*vel[2]; // amu A^3/fs^3
498 gezelter 507 }
499 gezelter 246 }
500 chuckv 1666
501 gezelter 1782 /* The J_v vector is reduced in the forceManager so everyone has
502     * the global Jv. Jc is computed over the local atoms and must be
503     * reduced among all processors.
504     */
505 gezelter 2 #ifdef IS_MPI
506 gezelter 1782 MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &heatFluxJc[0], 3, MPI::REALTYPE,
507     MPI::SUM);
508     #endif
509    
510     // (kcal/mol * A/fs) * conversion => (amu A^3)/fs^3
511 gezelter 2
512 gezelter 1782 Vector3d heatFluxJv = currSnapshot->getConductiveHeatFlux() *
513     PhysicalConstants::energyConvert;
514    
515     // Correct for the fact the flux is 1/V (Jc + Jv)
516     return (heatFluxJv + heatFluxJc) / this->getVolume(); // amu / fs^3
517     }
518 gezelter 1126
519 chuckv 1666
520 gezelter 1782 Vector3d Thermo::getComVel(){
521     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
522    
523     if (!snap->hasCOMvel) {
524    
525     SimInfo::MoleculeIterator i;
526     Molecule* mol;
527    
528     Vector3d comVel(0.0);
529     RealType totalMass(0.0);
530    
531     for (mol = info_->beginMolecule(i); mol != NULL;
532     mol = info_->nextMolecule(i)) {
533     RealType mass = mol->getMass();
534     totalMass += mass;
535     comVel += mass * mol->getComVel();
536     }
537    
538     #ifdef IS_MPI
539     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
540     MPI::SUM);
541     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
542     MPI::REALTYPE, MPI::SUM);
543     #endif
544    
545     comVel /= totalMass;
546     snap->setCOMvel(comVel);
547     }
548     return snap->getCOMvel();
549 gezelter 507 }
550 gezelter 2
551 gezelter 1782 Vector3d Thermo::getCom(){
552     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
553 chrisfen 998
554 gezelter 1782 if (!snap->hasCOM) {
555    
556     SimInfo::MoleculeIterator i;
557     Molecule* mol;
558    
559     Vector3d com(0.0);
560     RealType totalMass(0.0);
561    
562     for (mol = info_->beginMolecule(i); mol != NULL;
563     mol = info_->nextMolecule(i)) {
564     RealType mass = mol->getMass();
565     totalMass += mass;
566     com += mass * mol->getCom();
567     }
568    
569     #ifdef IS_MPI
570     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
571     MPI::SUM);
572     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
573     MPI::REALTYPE, MPI::SUM);
574     #endif
575    
576     com /= totalMass;
577     snap->setCOM(com);
578     }
579     return snap->getCOM();
580     }
581 chuckv 1666
582 gezelter 1782 /**
583     * Returns center of mass and center of mass velocity in one
584     * function call.
585     */
586     void Thermo::getComAll(Vector3d &com, Vector3d &comVel){
587     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
588 gezelter 2
589 gezelter 1782 if (!(snap->hasCOM && snap->hasCOMvel)) {
590 tim 541
591 gezelter 1782 SimInfo::MoleculeIterator i;
592     Molecule* mol;
593    
594     RealType totalMass(0.0);
595    
596     com = 0.0;
597     comVel = 0.0;
598    
599     for (mol = info_->beginMolecule(i); mol != NULL;
600     mol = info_->nextMolecule(i)) {
601     RealType mass = mol->getMass();
602     totalMass += mass;
603     com += mass * mol->getCom();
604     comVel += mass * mol->getComVel();
605     }
606    
607     #ifdef IS_MPI
608     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, &totalMass, 1, MPI::REALTYPE,
609     MPI::SUM);
610     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, com.getArrayPointer(), 3,
611     MPI::REALTYPE, MPI::SUM);
612     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, comVel.getArrayPointer(), 3,
613     MPI::REALTYPE, MPI::SUM);
614     #endif
615    
616     com /= totalMass;
617     comVel /= totalMass;
618     snap->setCOM(com);
619     snap->setCOMvel(comVel);
620     }
621     com = snap->getCOM();
622     comVel = snap->getCOMvel();
623     return;
624     }
625    
626     /**
627     * Return intertia tensor for entire system and angular momentum
628     * Vector.
629     *
630     *
631     *
632     * [ Ixx -Ixy -Ixz ]
633     * I =| -Iyx Iyy -Iyz |
634     * [ -Izx -Iyz Izz ]
635     */
636     void Thermo::getInertiaTensor(Mat3x3d &inertiaTensor,
637     Vector3d &angularMomentum){
638    
639     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
640    
641     if (!(snap->hasInertiaTensor && snap->hasCOMw)) {
642    
643     RealType xx = 0.0;
644     RealType yy = 0.0;
645     RealType zz = 0.0;
646     RealType xy = 0.0;
647     RealType xz = 0.0;
648     RealType yz = 0.0;
649     Vector3d com(0.0);
650     Vector3d comVel(0.0);
651    
652     getComAll(com, comVel);
653    
654     SimInfo::MoleculeIterator i;
655     Molecule* mol;
656    
657     Vector3d thisq(0.0);
658     Vector3d thisv(0.0);
659    
660     RealType thisMass = 0.0;
661    
662     for (mol = info_->beginMolecule(i); mol != NULL;
663     mol = info_->nextMolecule(i)) {
664    
665     thisq = mol->getCom()-com;
666     thisv = mol->getComVel()-comVel;
667     thisMass = mol->getMass();
668     // Compute moment of intertia coefficients.
669     xx += thisq[0]*thisq[0]*thisMass;
670     yy += thisq[1]*thisq[1]*thisMass;
671     zz += thisq[2]*thisq[2]*thisMass;
672    
673     // compute products of intertia
674     xy += thisq[0]*thisq[1]*thisMass;
675     xz += thisq[0]*thisq[2]*thisMass;
676     yz += thisq[1]*thisq[2]*thisMass;
677    
678     angularMomentum += cross( thisq, thisv ) * thisMass;
679     }
680    
681     inertiaTensor(0,0) = yy + zz;
682     inertiaTensor(0,1) = -xy;
683     inertiaTensor(0,2) = -xz;
684     inertiaTensor(1,0) = -xy;
685     inertiaTensor(1,1) = xx + zz;
686     inertiaTensor(1,2) = -yz;
687     inertiaTensor(2,0) = -xz;
688     inertiaTensor(2,1) = -yz;
689     inertiaTensor(2,2) = xx + yy;
690    
691     #ifdef IS_MPI
692     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE, inertiaTensor.getArrayPointer(),
693     9, MPI::REALTYPE, MPI::SUM);
694     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
695     angularMomentum.getArrayPointer(), 3,
696     MPI::REALTYPE, MPI::SUM);
697     #endif
698    
699     snap->setCOMw(angularMomentum);
700     snap->setInertiaTensor(inertiaTensor);
701     }
702    
703     angularMomentum = snap->getCOMw();
704     inertiaTensor = snap->getInertiaTensor();
705    
706     return;
707     }
708    
709     // Returns the angular momentum of the system
710     Vector3d Thermo::getAngularMomentum(){
711     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
712    
713     if (!snap->hasCOMw) {
714    
715     Vector3d com(0.0);
716     Vector3d comVel(0.0);
717     Vector3d angularMomentum(0.0);
718    
719     getComAll(com, comVel);
720    
721     SimInfo::MoleculeIterator i;
722     Molecule* mol;
723    
724     Vector3d thisr(0.0);
725     Vector3d thisp(0.0);
726    
727     RealType thisMass;
728    
729     for (mol = info_->beginMolecule(i); mol != NULL;
730     mol = info_->nextMolecule(i)) {
731     thisMass = mol->getMass();
732     thisr = mol->getCom() - com;
733     thisp = (mol->getComVel() - comVel) * thisMass;
734    
735     angularMomentum += cross( thisr, thisp );
736     }
737    
738     #ifdef IS_MPI
739     MPI::COMM_WORLD.Allreduce(MPI::IN_PLACE,
740     angularMomentum.getArrayPointer(), 3,
741     MPI::REALTYPE, MPI::SUM);
742     #endif
743    
744     snap->setCOMw(angularMomentum);
745     }
746    
747     return snap->getCOMw();
748     }
749    
750    
751     /**
752     * Returns the Volume of the system based on a ellipsoid with
753     * semi-axes based on the radius of gyration V=4/3*Pi*R_1*R_2*R_3
754     * where R_i are related to the principle inertia moments
755     * R_i = sqrt(C*I_i/N), this reduces to
756     * V = 4/3*Pi*(C/N)^3/2*sqrt(det(I)).
757     * See S.E. Baltazar et. al. Comp. Mat. Sci. 37 (2006) 526-536.
758     */
759     RealType Thermo::getGyrationalVolume(){
760     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
761    
762     if (!snap->hasGyrationalVolume) {
763    
764     Mat3x3d intTensor;
765     RealType det;
766     Vector3d dummyAngMom;
767     RealType sysconstants;
768     RealType geomCnst;
769     RealType volume;
770    
771     geomCnst = 3.0/2.0;
772     /* Get the inertial tensor and angular momentum for free*/
773     getInertiaTensor(intTensor, dummyAngMom);
774    
775     det = intTensor.determinant();
776     sysconstants = geomCnst / (RealType)(info_->getNGlobalIntegrableObjects());
777     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(det);
778    
779     snap->setGyrationalVolume(volume);
780     }
781     return snap->getGyrationalVolume();
782     }
783    
784     void Thermo::getGyrationalVolume(RealType &volume, RealType &detI){
785     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
786    
787     if (!(snap->hasInertiaTensor && snap->hasGyrationalVolume)) {
788    
789     Mat3x3d intTensor;
790     Vector3d dummyAngMom;
791     RealType sysconstants;
792     RealType geomCnst;
793    
794     geomCnst = 3.0/2.0;
795     /* Get the inertia tensor and angular momentum for free*/
796     this->getInertiaTensor(intTensor, dummyAngMom);
797    
798     detI = intTensor.determinant();
799     sysconstants = geomCnst/(RealType)(info_->getNGlobalIntegrableObjects());
800     volume = 4.0/3.0*NumericConstant::PI*pow(sysconstants,geomCnst)*sqrt(detI);
801     snap->setGyrationalVolume(volume);
802     } else {
803     volume = snap->getGyrationalVolume();
804     detI = snap->getInertiaTensor().determinant();
805     }
806     return;
807     }
808    
809     RealType Thermo::getTaggedAtomPairDistance(){
810     Snapshot* currSnapshot = info_->getSnapshotManager()->getCurrentSnapshot();
811 gezelter 1291 Globals* simParams = info_->getSimParams();
812 gezelter 1782
813     if (simParams->haveTaggedAtomPair() &&
814 gezelter 1291 simParams->havePrintTaggedPairDistance()) {
815     if ( simParams->getPrintTaggedPairDistance()) {
816 gezelter 1782
817     pair<int, int> tap = simParams->getTaggedAtomPair();
818 gezelter 1291 Vector3d pos1, pos2, rab;
819 gezelter 1782
820     #ifdef IS_MPI
821     int mol1 = info_->getGlobalMolMembership(tap.first);
822     int mol2 = info_->getGlobalMolMembership(tap.second);
823 gezelter 1291
824     int proc1 = info_->getMolToProc(mol1);
825     int proc2 = info_->getMolToProc(mol2);
826    
827 gezelter 1782 RealType data[3];
828 gezelter 1291 if (proc1 == worldRank) {
829     StuntDouble* sd1 = info_->getIOIndexToIntegrableObject(tap.first);
830     pos1 = sd1->getPos();
831     data[0] = pos1.x();
832     data[1] = pos1.y();
833 gezelter 1782 data[2] = pos1.z();
834 gezelter 1291 MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
835     } else {
836     MPI_Bcast(data, 3, MPI_REALTYPE, proc1, MPI_COMM_WORLD);
837     pos1 = Vector3d(data);
838     }
839 chuckv 1292
840 gezelter 1291 if (proc2 == worldRank) {
841     StuntDouble* sd2 = info_->getIOIndexToIntegrableObject(tap.second);
842     pos2 = sd2->getPos();
843     data[0] = pos2.x();
844     data[1] = pos2.y();
845 gezelter 1782 data[2] = pos2.z();
846 gezelter 1291 MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
847     } else {
848     MPI_Bcast(data, 3, MPI_REALTYPE, proc2, MPI_COMM_WORLD);
849     pos2 = Vector3d(data);
850     }
851     #else
852     StuntDouble* at1 = info_->getIOIndexToIntegrableObject(tap.first);
853     StuntDouble* at2 = info_->getIOIndexToIntegrableObject(tap.second);
854     pos1 = at1->getPos();
855     pos2 = at2->getPos();
856 gezelter 1782 #endif
857 gezelter 1291 rab = pos2 - pos1;
858     currSnapshot->wrapVector(rab);
859 gezelter 1782 return rab.length();
860 gezelter 1291 }
861 gezelter 1782 return 0.0;
862 gezelter 1291 }
863 gezelter 1782 return 0.0;
864 gezelter 507 }
865 gezelter 2
866 gezelter 1782 RealType Thermo::getHullVolume(){
867     Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
868 jmichalk 1604
869 gezelter 1782 #ifdef HAVE_QHULL
870     if (!snap->hasHullVolume) {
871     Hull* surfaceMesh_;
872 jmichalk 1604
873 gezelter 1782 Globals* simParams = info_->getSimParams();
874     const std::string ht = simParams->getHULL_Method();
875    
876     if (ht == "Convex") {
877     surfaceMesh_ = new ConvexHull();
878     } else if (ht == "AlphaShape") {
879     surfaceMesh_ = new AlphaHull(simParams->getAlpha());
880     } else {
881     return 0.0;
882     }
883    
884     // Build a vector of stunt doubles to determine if they are
885     // surface atoms
886     std::vector<StuntDouble*> localSites_;
887     Molecule* mol;
888     StuntDouble* sd;
889     SimInfo::MoleculeIterator i;
890     Molecule::IntegrableObjectIterator j;
891    
892     for (mol = info_->beginMolecule(i); mol != NULL;
893     mol = info_->nextMolecule(i)) {
894     for (sd = mol->beginIntegrableObject(j);
895     sd != NULL;
896     sd = mol->nextIntegrableObject(j)) {
897     localSites_.push_back(sd);
898 jmichalk 1604 }
899 gezelter 1782 }
900    
901     // Compute surface Mesh
902     surfaceMesh_->computeHull(localSites_);
903     snap->setHullVolume(surfaceMesh_->getVolume());
904 jmichalk 1604 }
905 gezelter 1782 return snap->getHullVolume();
906 chuckv 1666 #else
907 gezelter 1782 return 0.0;
908 chuckv 1638 #endif
909 gezelter 1782 }
910     }

Properties

Name Value
svn:keywords Author Id Revision Date