ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Stats.cpp
Revision: 2046
Committed: Tue Dec 2 22:11:04 2014 UTC (10 years, 4 months ago) by gezelter
File size: 22926 byte(s)
Log Message:
Fixed some broken comments for use with Doxygen.
Made changes to allow topology-based force-field overrides in include files.
Fixed a calculation of box quadrupole moments for molecules with point dipoles.

File Contents

# Content
1 /*
2 * Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved.
3 *
4 * The University of Notre Dame grants you ("Licensee") a
5 * non-exclusive, royalty free, license to use, modify and
6 * redistribute this software in source and binary code form, provided
7 * that the following conditions are met:
8 *
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 *
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the
15 * distribution.
16 *
17 * This software is provided "AS IS," without a warranty of any
18 * kind. All express or implied conditions, representations and
19 * warranties, including any implied warranty of merchantability,
20 * fitness for a particular purpose or non-infringement, are hereby
21 * excluded. The University of Notre Dame and its licensors shall not
22 * be liable for any damages suffered by licensee as a result of
23 * using, modifying or distributing the software or its
24 * derivatives. In no event will the University of Notre Dame or its
25 * licensors be liable for any lost revenue, profit or data, or for
26 * direct, indirect, special, consequential, incidental or punitive
27 * damages, however caused and regardless of the theory of liability,
28 * arising out of the use of or inability to use software, even if the
29 * University of Notre Dame has been advised of the possibility of
30 * such damages.
31 *
32 * SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your
33 * research, please cite the appropriate papers when you publish your
34 * work. Good starting points are:
35 *
36 * [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).
37 * [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).
38 * [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).
39 * [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010).
40 * [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41 */
42
43 #include "brains/Stats.hpp"
44 #include "brains/Thermo.hpp"
45
46 namespace OpenMD {
47
48 Stats::Stats(SimInfo* info) : isInit_(false), info_(info) {
49
50 if (!isInit_) {
51 init();
52 isInit_ = true;
53 }
54 }
55
56 void Stats::init() {
57
58 data_.resize(Stats::ENDINDEX);
59
60 StatsData time;
61 time.units = "fs";
62 time.title = "Time";
63 time.dataType = "RealType";
64 time.accumulator = new Accumulator();
65 data_[TIME] = time;
66 statsMap_["TIME"] = TIME;
67
68 StatsData total_energy;
69 total_energy.units = "kcal/mol";
70 total_energy.title = "Total Energy";
71 total_energy.dataType = "RealType";
72 total_energy.accumulator = new Accumulator();
73 data_[TOTAL_ENERGY] = total_energy;
74 statsMap_["TOTAL_ENERGY"] = TOTAL_ENERGY;
75
76 StatsData potential_energy;
77 potential_energy.units = "kcal/mol";
78 potential_energy.title = "Potential Energy";
79 potential_energy.dataType = "RealType";
80 potential_energy.accumulator = new Accumulator();
81 data_[POTENTIAL_ENERGY] = potential_energy;
82 statsMap_["POTENTIAL_ENERGY"] = POTENTIAL_ENERGY;
83
84 StatsData kinetic_energy;
85 kinetic_energy.units = "kcal/mol";
86 kinetic_energy.title = "Kinetic Energy";
87 kinetic_energy.dataType = "RealType";
88 kinetic_energy.accumulator = new Accumulator();
89 data_[KINETIC_ENERGY] = kinetic_energy;
90 statsMap_["KINETIC_ENERGY"] = KINETIC_ENERGY;
91
92 StatsData temperature;
93 temperature.units = "K";
94 temperature.title = "Temperature";
95 temperature.dataType = "RealType";
96 temperature.accumulator = new Accumulator();
97 data_[TEMPERATURE] = temperature;
98 statsMap_["TEMPERATURE"] = TEMPERATURE;
99
100 StatsData pressure;
101 pressure.units = "atm";
102 pressure.title = "Pressure";
103 pressure.dataType = "RealType";
104 pressure.accumulator = new Accumulator();
105 data_[PRESSURE] = pressure;
106 statsMap_["PRESSURE"] = PRESSURE;
107
108 StatsData volume;
109 volume.units = "A^3";
110 volume.title = "Volume";
111 volume.dataType = "RealType";
112 volume.accumulator = new Accumulator();
113 data_[VOLUME] = volume;
114 statsMap_["VOLUME"] = VOLUME;
115
116 StatsData hullvolume;
117 hullvolume.units = "A^3";
118 hullvolume.title = "Hull Volume";
119 hullvolume.dataType = "RealType";
120 hullvolume.accumulator = new Accumulator();
121 data_[HULLVOLUME] = hullvolume;
122 statsMap_["HULLVOLUME"] = HULLVOLUME;
123
124 StatsData gyrvolume;
125 gyrvolume.units = "A^3";
126 gyrvolume.title = "Gyrational Volume";
127 gyrvolume.dataType = "RealType";
128 gyrvolume.accumulator = new Accumulator();
129 data_[GYRVOLUME] = gyrvolume;
130 statsMap_["GYRVOLUME"] = GYRVOLUME;
131
132 StatsData conserved_quantity;
133 conserved_quantity.units = "kcal/mol";
134 conserved_quantity.title = "Conserved Quantity";
135 conserved_quantity.dataType = "RealType";
136 conserved_quantity.accumulator = new Accumulator();
137 data_[CONSERVED_QUANTITY] = conserved_quantity;
138 statsMap_["CONSERVED_QUANTITY"] = CONSERVED_QUANTITY;
139
140 StatsData translational_kinetic;
141 translational_kinetic.units = "kcal/mol";
142 translational_kinetic.title = "Translational Kinetic";
143 translational_kinetic.dataType = "RealType";
144 translational_kinetic.accumulator = new Accumulator();
145 data_[TRANSLATIONAL_KINETIC] = translational_kinetic;
146 statsMap_["TRANSLATIONAL_KINETIC"] = TRANSLATIONAL_KINETIC;
147
148 StatsData rotational_kinetic;
149 rotational_kinetic.units = "kcal/mol";
150 rotational_kinetic.title = "Rotational Kinetic";
151 rotational_kinetic.dataType = "RealType";
152 rotational_kinetic.accumulator = new Accumulator();
153 data_[ROTATIONAL_KINETIC] = rotational_kinetic;
154 statsMap_["ROTATIONAL_KINETIC"] = ROTATIONAL_KINETIC;
155
156 StatsData long_range_potential;
157 long_range_potential.units = "kcal/mol";
158 long_range_potential.title = "Long Range Potential";
159 long_range_potential.dataType = "RealType";
160 long_range_potential.accumulator = new Accumulator();
161 data_[LONG_RANGE_POTENTIAL] = long_range_potential;
162 statsMap_["LONG_RANGE_POTENTIAL"] = LONG_RANGE_POTENTIAL;
163
164 StatsData vanderwaals_potential;
165 vanderwaals_potential.units = "kcal/mol";
166 vanderwaals_potential.title = "van der waals Potential";
167 vanderwaals_potential.dataType = "RealType";
168 vanderwaals_potential.accumulator = new Accumulator();
169 data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential;
170 statsMap_["VANDERWAALS_POTENTIAL"] = VANDERWAALS_POTENTIAL;
171
172 StatsData electrostatic_potential;
173 electrostatic_potential.units = "kcal/mol";
174 electrostatic_potential.title = "Electrostatic Potential";
175 electrostatic_potential.dataType = "RealType";
176 electrostatic_potential.accumulator = new Accumulator();
177 data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential;
178 statsMap_["ELECTROSTATIC_POTENTIAL"] = ELECTROSTATIC_POTENTIAL;
179
180 StatsData metallic_potential;
181 metallic_potential.units = "kcal/mol";
182 metallic_potential.title = "Metallic Potential";
183 metallic_potential.dataType = "RealType";
184 metallic_potential.accumulator = new Accumulator();
185 data_[METALLIC_POTENTIAL] = metallic_potential;
186 statsMap_["METALLIC_POTENTIAL"] = METALLIC_POTENTIAL;
187
188 StatsData hydrogenbonding_potential;
189 hydrogenbonding_potential.units = "kcal/mol";
190 hydrogenbonding_potential.title = "Hydrogen Bonding Potential";
191 hydrogenbonding_potential.dataType = "RealType";
192 hydrogenbonding_potential.accumulator = new Accumulator();
193 data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential;
194 statsMap_["HYDROGENBONDING_POTENTIAL"] = HYDROGENBONDING_POTENTIAL;
195
196 StatsData reciprocal_potential;
197 reciprocal_potential.units = "kcal/mol";
198 reciprocal_potential.title = "Reciprocal Space Potential";
199 reciprocal_potential.dataType = "RealType";
200 reciprocal_potential.accumulator = new Accumulator();
201 data_[RECIPROCAL_POTENTIAL] = reciprocal_potential;
202 statsMap_["RECIPROCAL_POTENTIAL"] = RECIPROCAL_POTENTIAL;
203
204 StatsData short_range_potential;
205 short_range_potential.units = "kcal/mol";
206 short_range_potential.title = "Short Range Potential";
207 short_range_potential.dataType = "RealType";
208 short_range_potential.accumulator = new Accumulator();
209 data_[SHORT_RANGE_POTENTIAL] = short_range_potential;
210 statsMap_["SHORT_RANGE_POTENTIAL"] = SHORT_RANGE_POTENTIAL;
211
212 StatsData bond_potential;
213 bond_potential.units = "kcal/mol";
214 bond_potential.title = "Bond Potential";
215 bond_potential.dataType = "RealType";
216 bond_potential.accumulator = new Accumulator();
217 data_[BOND_POTENTIAL] = bond_potential;
218 statsMap_["BOND_POTENTIAL"] = BOND_POTENTIAL;
219
220 StatsData bend_potential;
221 bend_potential.units = "kcal/mol";
222 bend_potential.title = "Bend Potential";
223 bend_potential.dataType = "RealType";
224 bend_potential.accumulator = new Accumulator();
225 data_[BEND_POTENTIAL] = bend_potential;
226 statsMap_["BEND_POTENTIAL"] = BEND_POTENTIAL;
227
228 StatsData dihedral_potential;
229 dihedral_potential.units = "kcal/mol";
230 dihedral_potential.title = "Dihedral Potential";
231 dihedral_potential.dataType = "RealType";
232 dihedral_potential.accumulator = new Accumulator();
233 data_[DIHEDRAL_POTENTIAL] = dihedral_potential;
234 statsMap_["DIHEDRAL_POTENTIAL"] = DIHEDRAL_POTENTIAL;
235
236 StatsData inversion_potential;
237 inversion_potential.units = "kcal/mol";
238 inversion_potential.title = "Inversion Potential";
239 inversion_potential.dataType = "RealType";
240 inversion_potential.accumulator = new Accumulator();
241 data_[INVERSION_POTENTIAL] = inversion_potential;
242 statsMap_["INVERSION_POTENTIAL"] = INVERSION_POTENTIAL;
243
244 StatsData vraw;
245 vraw.units = "kcal/mol";
246 vraw.title = "Raw Potential";
247 vraw.dataType = "RealType";
248 vraw.accumulator = new Accumulator();
249 data_[RAW_POTENTIAL] = vraw;
250 statsMap_["RAW_POTENTIAL"] = RAW_POTENTIAL;
251
252 StatsData vrestraint;
253 vrestraint.units = "kcal/mol";
254 vrestraint.title = "Restraint Potential";
255 vrestraint.dataType = "RealType";
256 vrestraint.accumulator = new Accumulator();
257 data_[RESTRAINT_POTENTIAL] = vrestraint;
258 statsMap_["RESTRAINT_POTENTIAL"] = RESTRAINT_POTENTIAL;
259
260 StatsData pressure_tensor;
261 pressure_tensor.units = "amu*fs^-2*Ang^-1";
262 pressure_tensor.title = "Ptensor";
263 pressure_tensor.dataType = "Mat3x3d";
264 pressure_tensor.accumulator = new MatrixAccumulator();
265 data_[PRESSURE_TENSOR] = pressure_tensor;
266 statsMap_["PRESSURE_TENSOR"] = PRESSURE_TENSOR;
267
268 StatsData system_dipole;
269 system_dipole.units = "C*m";
270 system_dipole.title = "System Dipole";
271 system_dipole.dataType = "Vector3d";
272 system_dipole.accumulator = new VectorAccumulator();
273 data_[SYSTEM_DIPOLE] = system_dipole;
274 statsMap_["SYSTEM_DIPOLE"] = SYSTEM_DIPOLE;
275
276 StatsData system_quadrupole;
277 system_quadrupole.units = "C*m*m";
278 system_quadrupole.title = "System Quadrupole";
279 system_quadrupole.dataType = "Mat3x3d";
280 system_quadrupole.accumulator = new MatrixAccumulator();
281 data_[SYSTEM_QUADRUPOLE] = system_quadrupole;
282 statsMap_["SYSTEM_QUADRUPOLE"] = SYSTEM_QUADRUPOLE;
283
284 StatsData tagged_pair_distance;
285 tagged_pair_distance.units = "Ang";
286 tagged_pair_distance.title = "Tagged_Pair_Distance";
287 tagged_pair_distance.dataType = "RealType";
288 tagged_pair_distance.accumulator = new Accumulator();
289 data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance;
290 statsMap_["TAGGED_PAIR_DISTANCE"] = TAGGED_PAIR_DISTANCE;
291
292 StatsData shadowh;
293 shadowh.units = "kcal/mol";
294 shadowh.title = "Shadow Hamiltonian";
295 shadowh.dataType = "RealType";
296 shadowh.accumulator = new Accumulator();
297 data_[SHADOWH] = shadowh;
298 statsMap_["SHADOWH"] = SHADOWH;
299
300 StatsData helfandmoment;
301 helfandmoment.units = "Ang*kcal/mol";
302 helfandmoment.title = "Thermal Helfand Moment";
303 helfandmoment.dataType = "Vector3d";
304 helfandmoment.accumulator = new VectorAccumulator();
305 data_[HELFANDMOMENT] = helfandmoment;
306 statsMap_["HELFANDMOMENT"] = HELFANDMOMENT;
307
308 StatsData heatflux;
309 heatflux.units = "amu/fs^3";
310 heatflux.title = "Heat Flux";
311 heatflux.dataType = "Vector3d";
312 heatflux.accumulator = new VectorAccumulator();
313 data_[HEATFLUX] = heatflux;
314 statsMap_["HEATFLUX"] = HEATFLUX;
315
316 StatsData electronic_temperature;
317 electronic_temperature.units = "K";
318 electronic_temperature.title = "Electronic Temperature";
319 electronic_temperature.dataType = "RealType";
320 electronic_temperature.accumulator = new Accumulator();
321 data_[ELECTRONIC_TEMPERATURE] = electronic_temperature;
322 statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE;
323
324 StatsData com;
325 com.units = "A";
326 com.title = "Center of Mass";
327 com.dataType = "Vector3d";
328 com.accumulator = new VectorAccumulator();
329 data_[COM] = com;
330 statsMap_["COM"] = COM;
331
332 StatsData comVel;
333 comVel.units = "A/fs";
334 comVel.title = "Center of Mass Velocity";
335 comVel.dataType = "Vector3d";
336 comVel.accumulator = new VectorAccumulator();
337 data_[COM_VELOCITY] = comVel;
338 statsMap_["COM_VELOCITY"] = COM_VELOCITY;
339
340 StatsData angMom;
341 angMom.units = "amu A^2/fs";
342 angMom.title = "Angular Momentum";
343 angMom.dataType = "Vector3d";
344 angMom.accumulator = new VectorAccumulator();
345 data_[ANGULAR_MOMENTUM] = angMom;
346 statsMap_["ANGULAR_MOMENTUM"] = ANGULAR_MOMENTUM;
347
348 // Now, set some defaults in the mask:
349
350 Globals* simParams = info_->getSimParams();
351 std::string statFileFormatString = simParams->getStatFileFormat();
352 parseStatFileFormat(statFileFormatString);
353
354 // if we're doing a thermodynamic integration, we'll want the raw
355 // potential as well as the full potential:
356
357 if (simParams->getUseThermodynamicIntegration())
358 statsMask_.set(RAW_POTENTIAL);
359
360 // if we've got restraints turned on, we'll also want a report of the
361 // total harmonic restraints
362 if (simParams->getUseRestraints()){
363 statsMask_.set(RESTRAINT_POTENTIAL);
364 }
365
366 if (simParams->havePrintPressureTensor() &&
367 simParams->getPrintPressureTensor()){
368 statsMask_.set(PRESSURE_TENSOR);
369 }
370
371 // Why do we have both of these?
372 if (simParams->getAccumulateBoxDipole()) {
373 statsMask_.set(SYSTEM_DIPOLE);
374 }
375 if (info_->getCalcBoxDipole()){
376 statsMask_.set(SYSTEM_DIPOLE);
377 }
378
379 // Why do we have both of these?
380 if (simParams->getAccumulateBoxQuadrupole()) {
381 statsMask_.set(SYSTEM_QUADRUPOLE);
382 }
383 if (info_->getCalcBoxQuadrupole()){
384 statsMask_.set(SYSTEM_QUADRUPOLE);
385 }
386
387 if (simParams->havePrintHeatFlux()) {
388 if (simParams->getPrintHeatFlux()){
389 statsMask_.set(HEATFLUX);
390 }
391 }
392
393
394 if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) {
395 if (simParams->getPrintTaggedPairDistance()) {
396 statsMask_.set(TAGGED_PAIR_DISTANCE);
397 }
398 }
399
400 }
401
402 void Stats::parseStatFileFormat(const std::string& format) {
403 StringTokenizer tokenizer(format, " ,;|\t\n\r");
404
405 while(tokenizer.hasMoreTokens()) {
406 std::string token(tokenizer.nextToken());
407 toUpper(token);
408 StatsMapType::iterator i = statsMap_.find(token);
409 if (i != statsMap_.end()) {
410 statsMask_.set(i->second);
411 } else {
412 sprintf( painCave.errMsg,
413 "Stats::parseStatFileFormat: %s is not a recognized\n"
414 "\tstatFileFormat keyword.\n", token.c_str() );
415 painCave.isFatal = 0;
416 painCave.severity = OPENMD_ERROR;
417 simError();
418 }
419 }
420 }
421
422 Stats::~Stats() {
423 data_.clear();
424 statsMap_.clear();
425 }
426
427 std::string Stats::getTitle(int index) {
428 assert(index >=0 && index < ENDINDEX);
429 return data_[index].title;
430 }
431
432 std::string Stats::getUnits(int index) {
433 assert(index >=0 && index < ENDINDEX);
434 return data_[index].units;
435 }
436
437 std::string Stats::getDataType(int index) {
438 assert(index >=0 && index < ENDINDEX);
439 return data_[index].dataType;
440 }
441
442 void Stats::collectStats(){
443 Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
444 Thermo thermo(info_);
445
446 for (unsigned int i = 0; i < statsMask_.size(); ++i) {
447 if (statsMask_[i]) {
448 switch (i) {
449 case TIME:
450 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime());
451 break;
452 case KINETIC_ENERGY:
453 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic());
454 break;
455 case POTENTIAL_ENERGY:
456 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential());
457 break;
458 case TOTAL_ENERGY:
459 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy());
460 break;
461 case TEMPERATURE:
462 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature());
463 break;
464 case PRESSURE:
465 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure());
466 break;
467 case VOLUME:
468 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume());
469 break;
470 case CONSERVED_QUANTITY:
471 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity());
472 break;
473 case PRESSURE_TENSOR:
474 dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor());
475 break;
476 case SYSTEM_DIPOLE:
477 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole());
478 break;
479 case SYSTEM_QUADRUPOLE:
480 dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getSystemQuadrupole());
481 break;
482 case HEATFLUX:
483 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux());
484 break;
485 case HULLVOLUME:
486 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume());
487 break;
488 case GYRVOLUME:
489 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume());
490 break;
491 case TRANSLATIONAL_KINETIC:
492 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic());
493 break;
494 case ROTATIONAL_KINETIC:
495 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic());
496 break;
497 case LONG_RANGE_POTENTIAL:
498 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential());
499 break;
500 case VANDERWAALS_POTENTIAL:
501 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]);
502 break;
503 case ELECTROSTATIC_POTENTIAL:
504 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]);
505 break;
506 case METALLIC_POTENTIAL:
507 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]);
508 break;
509 case HYDROGENBONDING_POTENTIAL:
510 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]);
511 break;
512 case RECIPROCAL_POTENTIAL:
513 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getReciprocalPotential());
514 break;
515 case SHORT_RANGE_POTENTIAL:
516 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential());
517 break;
518 case BOND_POTENTIAL:
519 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential());
520 break;
521 case BEND_POTENTIAL:
522 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential());
523 break;
524 case DIHEDRAL_POTENTIAL:
525 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential());
526 break;
527 case INVERSION_POTENTIAL:
528 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential());
529 break;
530 case RAW_POTENTIAL:
531 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential());
532 break;
533 case RESTRAINT_POTENTIAL:
534 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential());
535 break;
536 case TAGGED_PAIR_DISTANCE:
537 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance());
538 break;
539 case ELECTRONIC_TEMPERATURE:
540 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature());
541 break;
542 case COM:
543 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getCom());
544 break;
545 case COM_VELOCITY:
546 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getComVel());
547 break;
548 case ANGULAR_MOMENTUM:
549 dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getAngularMomentum());
550 break;
551 /*
552 case SHADOWH:
553 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian());
554 break;
555 case HELFANDMOMENT:
556 dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment());
557 break;
558 */
559 }
560 }
561 }
562 }
563
564 int Stats::getIntData(int index) {
565 assert(index >=0 && index < ENDINDEX);
566 RealType value;
567 dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value);
568 return (int) value;
569 }
570 RealType Stats::getRealData(int index) {
571 assert(index >=0 && index < ENDINDEX);
572 RealType value(0.0);
573 dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value);
574 return value;
575 }
576 Vector3d Stats::getVectorData(int index) {
577 assert(index >=0 && index < ENDINDEX);
578 Vector3d value;
579 dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value);
580 return value;
581 }
582 Mat3x3d Stats::getMatrixData(int index) {
583 assert(index >=0 && index < ENDINDEX);
584 Mat3x3d value;
585 dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value);
586 return value;
587 }
588
589 Stats::StatsBitSet Stats::getStatsMask() {
590 return statsMask_;
591 }
592 Stats::StatsMapType Stats::getStatsMap() {
593 return statsMap_;
594 }
595 void Stats::setStatsMask(Stats::StatsBitSet mask) {
596 statsMask_ = mask;
597 }
598
599 }

Properties

Name Value
svn:executable *
svn:keywords Author Id Revision Date