ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Stats.cpp
(Generate patch)

Comparing trunk/src/brains/Stats.cpp (file contents):
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
Revision 1925 by gezelter, Wed Aug 7 15:24:16 2013 UTC

# Line 1 | Line 1
1   /*
2 < * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
2 > * Copyright (c) 2005, 2009 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
5   * non-exclusive, royalty free, license to use, modify and
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42    
43   /**
# Line 48 | Line 49
49   */
50  
51   #include "brains/Stats.hpp"
52 + #include "brains/Thermo.hpp"
53  
54 < namespace oopse {
54 > namespace OpenMD {
55  
56 <  bool Stats::isInit_ = false;
55 <  std::string Stats::title_[Stats::ENDINDEX - Stats::BEGININDEX];
56 <  std::string Stats::units_[Stats::ENDINDEX - Stats::BEGININDEX];
57 <  Stats::StatsMapType Stats::statsMap;
58 <  Stats::Stats() {
56 >  Stats::Stats(SimInfo* info) : isInit_(false), info_(info) {  
57  
58      if (!isInit_) {
59        init();
60        isInit_ = true;
61      }
64
62    }
63  
64    void Stats::init() {
65 +  
66 +    data_.resize(Stats::ENDINDEX);
67  
68 <    Stats::title_[TIME] = "Time";
69 <    Stats::title_[TOTAL_ENERGY] = "Total Energy";
70 <    Stats::title_[POTENTIAL_ENERGY] = "Potential Energy";
71 <    Stats::title_[KINETIC_ENERGY] = "Kinetic Energy";
72 <    Stats::title_[TEMPERATURE] = "Temperature";
73 <    Stats::title_[PRESSURE] = "Pressure";
74 <    Stats::title_[VOLUME] = "Volume";
76 <    Stats::title_[CONSERVED_QUANTITY] = "Conserved Quantity";            
77 <    Stats::title_[TRANSLATIONAL_KINETIC] = "Translational Kinetic";
78 <    Stats::title_[ROTATIONAL_KINETIC] = "Rotational Kinetic";
79 <    Stats::title_[LONG_RANGE_POTENTIAL] = "Long Range Potential";
80 <    Stats::title_[SHORT_RANGE_POTENTIAL] = "Short Range Potential";
81 <    Stats::title_[VANDERWAALS_POTENTIAL] = "van der waals Potential";
82 <    Stats::title_[ELECTROSTATIC_POTENTIAL] = "Electrostatic Potential";    
83 <    Stats::title_[BOND_POTENTIAL] = "Bond Potential";
84 <    Stats::title_[BEND_POTENTIAL] = "Bend Potential";
85 <    Stats::title_[DIHEDRAL_POTENTIAL] = "Dihedral Potential";
86 <    Stats::title_[IMPROPER_POTENTIAL] = "Improper Potential";
87 <    Stats::title_[VRAW] = "Raw Potential";
88 <    Stats::title_[VHARM] = "Harmonic Potential";
89 <    Stats::title_[PRESSURE_TENSOR_X] = "pressure tensor x";
90 <    Stats::title_[PRESSURE_TENSOR_Y] = "pressure tensor y";
91 <    Stats::title_[PRESSURE_TENSOR_Z] = "pressure tensor z";
92 <    Stats::title_[BOX_DIPOLE_X] = "box dipole x";
93 <    Stats::title_[BOX_DIPOLE_Y] = "box dipole y";
94 <    Stats::title_[BOX_DIPOLE_Z] = "box dipole z";
68 >    StatsData time;
69 >    time.units =  "fs";
70 >    time.title =  "Time";
71 >    time.dataType = "RealType";
72 >    time.accumulator = new Accumulator();
73 >    data_[TIME] = time;
74 >    statsMap_["TIME"] = TIME;
75  
76 <    Stats::units_[TIME] = "fs";
77 <    Stats::units_[TOTAL_ENERGY] = "kcal/mol";
78 <    Stats::units_[POTENTIAL_ENERGY] = "kcal/mol";
79 <    Stats::units_[KINETIC_ENERGY] = "kcal/mol";
80 <    Stats::units_[TEMPERATURE] = "K";
81 <    Stats::units_[PRESSURE] = "atm";
82 <    Stats::units_[VOLUME] = "A^3";
83 <    Stats::units_[CONSERVED_QUANTITY] = "kcal/mol";            
84 <    Stats::units_[TRANSLATIONAL_KINETIC] = "kcal/mol";
85 <    Stats::units_[ROTATIONAL_KINETIC] = "kcal/mol";
86 <    Stats::units_[LONG_RANGE_POTENTIAL] = "kcal/mol";
87 <    Stats::units_[SHORT_RANGE_POTENTIAL] = "kcal/mol";
88 <    Stats::units_[VANDERWAALS_POTENTIAL] = "kcal/mol";
89 <    Stats::units_[ELECTROSTATIC_POTENTIAL] = "kcal/mol";
90 <    Stats::units_[BOND_POTENTIAL] = "kcal/mol";
111 <    Stats::units_[BEND_POTENTIAL] = "kcal/mol";
112 <    Stats::units_[DIHEDRAL_POTENTIAL] = "kcal/mol";
113 <    Stats::units_[IMPROPER_POTENTIAL] = "kcal/mol";
114 <    Stats::units_[VRAW] = "kcal/mol";
115 <    Stats::units_[VHARM] = "kcal/mol";
116 <    Stats::units_[PRESSURE_TENSOR_X] = "amu*fs^-2*Ang^-1";
117 <    Stats::units_[PRESSURE_TENSOR_Y] = "amu*fs^-2*Ang^-1";
118 <    Stats::units_[PRESSURE_TENSOR_Z] = "amu*fs^-2*Ang^-1";
119 <    Stats::units_[BOX_DIPOLE_X] = "C*m";
120 <    Stats::units_[BOX_DIPOLE_Y] = "C*m";
121 <    Stats::units_[BOX_DIPOLE_Z] = "C*m";
76 >    StatsData total_energy;
77 >    total_energy.units =  "kcal/mol";
78 >    total_energy.title =  "Total Energy";
79 >    total_energy.dataType = "RealType";
80 >    total_energy.accumulator = new Accumulator();
81 >    data_[TOTAL_ENERGY] = total_energy;
82 >    statsMap_["TOTAL_ENERGY"] =  TOTAL_ENERGY;
83 >  
84 >    StatsData potential_energy;
85 >    potential_energy.units =  "kcal/mol";
86 >    potential_energy.title =  "Potential Energy";
87 >    potential_energy.dataType = "RealType";
88 >    potential_energy.accumulator = new Accumulator();
89 >    data_[POTENTIAL_ENERGY] = potential_energy;
90 >    statsMap_["POTENTIAL_ENERGY"] =  POTENTIAL_ENERGY;
91  
92 <    Stats::statsMap.insert(StatsMapType::value_type("TIME", TIME));
93 <    Stats::statsMap.insert(StatsMapType::value_type("TOTAL_ENERGY", TOTAL_ENERGY));
94 <    Stats::statsMap.insert(StatsMapType::value_type("POTENTIAL_ENERGY", POTENTIAL_ENERGY));
95 <    Stats::statsMap.insert(StatsMapType::value_type("KINETIC_ENERGY", KINETIC_ENERGY));
96 <    Stats::statsMap.insert(StatsMapType::value_type("TEMPERATURE", TEMPERATURE));
97 <    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE", PRESSURE));
98 <    Stats::statsMap.insert(StatsMapType::value_type("VOLUME", VOLUME));
99 <    Stats::statsMap.insert(StatsMapType::value_type("CONSERVED_QUANTITY", CONSERVED_QUANTITY));
100 <    Stats::statsMap.insert(StatsMapType::value_type("TRANSLATIONAL_KINETIC", TRANSLATIONAL_KINETIC));
101 <    Stats::statsMap.insert(StatsMapType::value_type("ROTATIONAL_KINETIC", ROTATIONAL_KINETIC));
102 <    Stats::statsMap.insert(StatsMapType::value_type("LONG_RANGE_POTENTIAL", LONG_RANGE_POTENTIAL));
103 <    Stats::statsMap.insert(StatsMapType::value_type("SHORT_RANGE_POTENTIAL", SHORT_RANGE_POTENTIAL));
104 <    Stats::statsMap.insert(StatsMapType::value_type("VANDERWAALS_POTENTIAL", VANDERWAALS_POTENTIAL));
105 <    Stats::statsMap.insert(StatsMapType::value_type("ELECTROSTATIC_POTENTIAL", ELECTROSTATIC_POTENTIAL));
106 <    Stats::statsMap.insert(StatsMapType::value_type("BOND_POTENTIAL", BOND_POTENTIAL));
107 <    Stats::statsMap.insert(StatsMapType::value_type("BEND_POTENTIAL", BEND_POTENTIAL));
108 <    Stats::statsMap.insert(StatsMapType::value_type("DIHEDRAL_POTENTIAL", DIHEDRAL_POTENTIAL));
109 <    Stats::statsMap.insert(StatsMapType::value_type("IMPROPER_POTENTIAL", IMPROPER_POTENTIAL));
110 <    Stats::statsMap.insert(StatsMapType::value_type("VRAW", VRAW));    
111 <    Stats::statsMap.insert(StatsMapType::value_type("VHARM", VHARM));    
112 <    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_X", PRESSURE_TENSOR_X));    
113 <    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_Y", PRESSURE_TENSOR_Y));    
114 <    Stats::statsMap.insert(StatsMapType::value_type("PRESSURE_TENSOR_Z", PRESSURE_TENSOR_Z));    
115 <    Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_X", BOX_DIPOLE_X));    
116 <    Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_Y", BOX_DIPOLE_Y));    
117 <    Stats::statsMap.insert(StatsMapType::value_type("BOX_DIPOLE_Z", BOX_DIPOLE_Z));    
92 >    StatsData kinetic_energy;
93 >    kinetic_energy.units =  "kcal/mol";
94 >    kinetic_energy.title =  "Kinetic Energy";
95 >    kinetic_energy.dataType = "RealType";
96 >    kinetic_energy.accumulator = new Accumulator();
97 >    data_[KINETIC_ENERGY] = kinetic_energy;
98 >    statsMap_["KINETIC_ENERGY"] =  KINETIC_ENERGY;
99 >
100 >    StatsData temperature;
101 >    temperature.units =  "K";
102 >    temperature.title =  "Temperature";
103 >    temperature.dataType = "RealType";
104 >    temperature.accumulator = new Accumulator();
105 >    data_[TEMPERATURE] = temperature;
106 >    statsMap_["TEMPERATURE"] =  TEMPERATURE;
107 >
108 >    StatsData pressure;
109 >    pressure.units =  "atm";
110 >    pressure.title =  "Pressure";
111 >    pressure.dataType = "RealType";
112 >    pressure.accumulator = new Accumulator();
113 >    data_[PRESSURE] = pressure;
114 >    statsMap_["PRESSURE"] =  PRESSURE;
115 >
116 >    StatsData volume;
117 >    volume.units =  "A^3";
118 >    volume.title =  "Volume";
119 >    volume.dataType = "RealType";
120 >    volume.accumulator = new Accumulator();
121 >    data_[VOLUME] = volume;
122 >    statsMap_["VOLUME"] =  VOLUME;
123 >
124 >    StatsData hullvolume;
125 >    hullvolume.units =  "A^3";
126 >    hullvolume.title =  "Hull Volume";
127 >    hullvolume.dataType = "RealType";
128 >    hullvolume.accumulator = new Accumulator();
129 >    data_[HULLVOLUME] = hullvolume;
130 >    statsMap_["HULLVOLUME"] =  HULLVOLUME;
131 >
132 >    StatsData gyrvolume;
133 >    gyrvolume.units =  "A^3";
134 >    gyrvolume.title =  "Gyrational Volume";
135 >    gyrvolume.dataType = "RealType";
136 >    gyrvolume.accumulator = new Accumulator();
137 >    data_[GYRVOLUME] = gyrvolume;
138 >    statsMap_["GYRVOLUME"] =  GYRVOLUME;
139 >
140 >    StatsData conserved_quantity;
141 >    conserved_quantity.units =  "kcal/mol";            
142 >    conserved_quantity.title =  "Conserved Quantity";            
143 >    conserved_quantity.dataType = "RealType";
144 >    conserved_quantity.accumulator = new Accumulator();
145 >    data_[CONSERVED_QUANTITY] = conserved_quantity;
146 >    statsMap_["CONSERVED_QUANTITY"] =  CONSERVED_QUANTITY;
147 >
148 >    StatsData translational_kinetic;
149 >    translational_kinetic.units =  "kcal/mol";
150 >    translational_kinetic.title =  "Translational Kinetic";
151 >    translational_kinetic.dataType = "RealType";
152 >    translational_kinetic.accumulator = new Accumulator();
153 >    data_[TRANSLATIONAL_KINETIC] = translational_kinetic;
154 >    statsMap_["TRANSLATIONAL_KINETIC"] =  TRANSLATIONAL_KINETIC;
155 >
156 >    StatsData rotational_kinetic;
157 >    rotational_kinetic.units =  "kcal/mol";
158 >    rotational_kinetic.title =  "Rotational Kinetic";
159 >    rotational_kinetic.dataType = "RealType";
160 >    rotational_kinetic.accumulator = new Accumulator();
161 >    data_[ROTATIONAL_KINETIC] = rotational_kinetic;
162 >    statsMap_["ROTATIONAL_KINETIC"] =  ROTATIONAL_KINETIC;
163 >
164 >    StatsData long_range_potential;
165 >    long_range_potential.units =  "kcal/mol";
166 >    long_range_potential.title =  "Long Range Potential";
167 >    long_range_potential.dataType = "RealType";
168 >    long_range_potential.accumulator = new Accumulator();
169 >    data_[LONG_RANGE_POTENTIAL] = long_range_potential;
170 >    statsMap_["LONG_RANGE_POTENTIAL"] =  LONG_RANGE_POTENTIAL;
171 >
172 >    StatsData vanderwaals_potential;
173 >    vanderwaals_potential.units =  "kcal/mol";
174 >    vanderwaals_potential.title =  "van der waals Potential";
175 >    vanderwaals_potential.dataType = "RealType";
176 >    vanderwaals_potential.accumulator = new Accumulator();
177 >    data_[VANDERWAALS_POTENTIAL] = vanderwaals_potential;
178 >    statsMap_["VANDERWAALS_POTENTIAL"] =  VANDERWAALS_POTENTIAL;
179 >
180 >    StatsData electrostatic_potential;
181 >    electrostatic_potential.units =  "kcal/mol";
182 >    electrostatic_potential.title =  "Electrostatic Potential";    
183 >    electrostatic_potential.dataType = "RealType";
184 >    electrostatic_potential.accumulator = new Accumulator();
185 >    data_[ELECTROSTATIC_POTENTIAL] = electrostatic_potential;
186 >    statsMap_["ELECTROSTATIC_POTENTIAL"] =  ELECTROSTATIC_POTENTIAL;
187 >
188 >    StatsData metallic_potential;
189 >    metallic_potential.units =  "kcal/mol";
190 >    metallic_potential.title =  "Metallic Potential";    
191 >    metallic_potential.dataType = "RealType";
192 >    metallic_potential.accumulator = new Accumulator();
193 >    data_[METALLIC_POTENTIAL] = metallic_potential;
194 >    statsMap_["METALLIC_POTENTIAL"] =  METALLIC_POTENTIAL;
195 >
196 >    StatsData hydrogenbonding_potential;
197 >    hydrogenbonding_potential.units =  "kcal/mol";
198 >    hydrogenbonding_potential.title =  "Hydrogen Bonding Potential";    
199 >    hydrogenbonding_potential.dataType = "RealType";
200 >    hydrogenbonding_potential.accumulator = new Accumulator();
201 >    data_[HYDROGENBONDING_POTENTIAL] = hydrogenbonding_potential;
202 >    statsMap_["HYDROGENBONDING_POTENTIAL"] =  HYDROGENBONDING_POTENTIAL;
203 >
204 >    StatsData reciprocal_potential;
205 >    reciprocal_potential.units =  "kcal/mol";
206 >    reciprocal_potential.title =  "Reciprocal Space Potential";    
207 >    reciprocal_potential.dataType = "RealType";
208 >    reciprocal_potential.accumulator = new Accumulator();
209 >    data_[RECIPROCAL_POTENTIAL] = reciprocal_potential;
210 >    statsMap_["RECIPROCAL_POTENTIAL"] =  RECIPROCAL_POTENTIAL;
211 >
212 >    StatsData short_range_potential;
213 >    short_range_potential.units =  "kcal/mol";
214 >    short_range_potential.title =  "Short Range Potential";
215 >    short_range_potential.dataType = "RealType";
216 >    short_range_potential.accumulator = new Accumulator();
217 >    data_[SHORT_RANGE_POTENTIAL] = short_range_potential;
218 >    statsMap_["SHORT_RANGE_POTENTIAL"] =  SHORT_RANGE_POTENTIAL;
219 >
220 >    StatsData bond_potential;
221 >    bond_potential.units =  "kcal/mol";
222 >    bond_potential.title =  "Bond Potential";
223 >    bond_potential.dataType = "RealType";
224 >    bond_potential.accumulator = new Accumulator();
225 >    data_[BOND_POTENTIAL] = bond_potential;
226 >    statsMap_["BOND_POTENTIAL"] =  BOND_POTENTIAL;
227 >
228 >    StatsData bend_potential;
229 >    bend_potential.units =  "kcal/mol";
230 >    bend_potential.title =  "Bend Potential";
231 >    bend_potential.dataType = "RealType";
232 >    bend_potential.accumulator = new Accumulator();
233 >    data_[BEND_POTENTIAL] = bend_potential;
234 >    statsMap_["BEND_POTENTIAL"] =  BEND_POTENTIAL;
235 >    
236 >    StatsData dihedral_potential;
237 >    dihedral_potential.units =  "kcal/mol";
238 >    dihedral_potential.title =  "Dihedral Potential";
239 >    dihedral_potential.dataType = "RealType";
240 >    dihedral_potential.accumulator = new Accumulator();
241 >    data_[DIHEDRAL_POTENTIAL] = dihedral_potential;
242 >    statsMap_["DIHEDRAL_POTENTIAL"] =  DIHEDRAL_POTENTIAL;
243 >
244 >    StatsData inversion_potential;
245 >    inversion_potential.units =  "kcal/mol";
246 >    inversion_potential.title =  "Inversion Potential";
247 >    inversion_potential.dataType = "RealType";
248 >    inversion_potential.accumulator = new Accumulator();
249 >    data_[INVERSION_POTENTIAL] = inversion_potential;
250 >    statsMap_["INVERSION_POTENTIAL"] =  INVERSION_POTENTIAL;
251 >
252 >    StatsData vraw;
253 >    vraw.units =  "kcal/mol";
254 >    vraw.title =  "Raw Potential";
255 >    vraw.dataType = "RealType";
256 >    vraw.accumulator = new Accumulator();
257 >    data_[RAW_POTENTIAL] = vraw;
258 >    statsMap_["RAW_POTENTIAL"] =  RAW_POTENTIAL;
259 >
260 >    StatsData vrestraint;
261 >    vrestraint.units =  "kcal/mol";
262 >    vrestraint.title =  "Restraint Potential";
263 >    vrestraint.dataType = "RealType";
264 >    vrestraint.accumulator = new Accumulator();
265 >    data_[RESTRAINT_POTENTIAL] = vrestraint;
266 >    statsMap_["RESTRAINT_POTENTIAL"] =  RESTRAINT_POTENTIAL;
267 >
268 >    StatsData pressure_tensor;
269 >    pressure_tensor.units =  "amu*fs^-2*Ang^-1";
270 >    pressure_tensor.title =  "Ptensor";
271 >    pressure_tensor.dataType = "Mat3x3d";
272 >    pressure_tensor.accumulator = new MatrixAccumulator();
273 >    data_[PRESSURE_TENSOR] = pressure_tensor;
274 >    statsMap_["PRESSURE_TENSOR"] =  PRESSURE_TENSOR;
275 >
276 >    StatsData system_dipole;
277 >    system_dipole.units =  "C*m";
278 >    system_dipole.title =  "System Dipole";
279 >    system_dipole.dataType = "Vector3d";
280 >    system_dipole.accumulator = new VectorAccumulator();
281 >    data_[SYSTEM_DIPOLE] = system_dipole;
282 >    statsMap_["SYSTEM_DIPOLE"] =  SYSTEM_DIPOLE;
283 >
284 >    StatsData tagged_pair_distance;
285 >    tagged_pair_distance.units =  "Ang";
286 >    tagged_pair_distance.title =  "Tagged_Pair_Distance";
287 >    tagged_pair_distance.dataType = "RealType";
288 >    tagged_pair_distance.accumulator = new Accumulator();
289 >    data_[TAGGED_PAIR_DISTANCE] = tagged_pair_distance;
290 >    statsMap_["TAGGED_PAIR_DISTANCE"] =  TAGGED_PAIR_DISTANCE;
291 >
292 >    StatsData shadowh;
293 >    shadowh.units =  "kcal/mol";
294 >    shadowh.title =  "Shadow Hamiltonian";
295 >    shadowh.dataType = "RealType";
296 >    shadowh.accumulator = new Accumulator();
297 >    data_[SHADOWH] = shadowh;
298 >    statsMap_["SHADOWH"] =  SHADOWH;
299 >
300 >    StatsData helfandmoment;
301 >    helfandmoment.units =  "Ang*kcal/mol";
302 >    helfandmoment.title =  "Thermal Helfand Moment";
303 >    helfandmoment.dataType = "Vector3d";
304 >    helfandmoment.accumulator = new VectorAccumulator();
305 >    data_[HELFANDMOMENT] = helfandmoment;
306 >    statsMap_["HELFANDMOMENT"] = HELFANDMOMENT;
307 >
308 >    StatsData heatflux;
309 >    heatflux.units = "amu/fs^3";
310 >    heatflux.title =  "Heat Flux";  
311 >    heatflux.dataType = "Vector3d";
312 >    heatflux.accumulator = new VectorAccumulator();
313 >    data_[HEATFLUX] = heatflux;
314 >    statsMap_["HEATFLUX"] = HEATFLUX;
315 >
316 >    StatsData electronic_temperature;
317 >    electronic_temperature.units = "K";
318 >    electronic_temperature.title =  "Electronic Temperature";  
319 >    electronic_temperature.dataType = "RealType";
320 >    electronic_temperature.accumulator = new Accumulator();
321 >    data_[ELECTRONIC_TEMPERATURE] = electronic_temperature;
322 >    statsMap_["ELECTRONIC_TEMPERATURE"] = ELECTRONIC_TEMPERATURE;
323 >
324 >    StatsData com;
325 >    com.units =  "A";
326 >    com.title =  "Center of Mass";
327 >    com.dataType = "Vector3d";
328 >    com.accumulator = new VectorAccumulator();
329 >    data_[COM] = com;
330 >    statsMap_["COM"] =  COM;
331 >
332 >    StatsData comVel;
333 >    comVel.units =  "A/fs";
334 >    comVel.title =  "Center of Mass Velocity";
335 >    comVel.dataType = "Vector3d";
336 >    comVel.accumulator = new VectorAccumulator();
337 >    data_[COM_VELOCITY] = comVel;
338 >    statsMap_["COM_VELOCITY"] =  COM_VELOCITY;
339 >
340 >    StatsData angMom;
341 >    angMom.units =  "amu A^2/fs";
342 >    angMom.title =  "Angular Momentum";
343 >    angMom.dataType = "Vector3d";
344 >    angMom.accumulator = new VectorAccumulator();
345 >    data_[ANGULAR_MOMENTUM] = angMom;
346 >    statsMap_["ANGULAR_MOMENTUM"] =  ANGULAR_MOMENTUM;
347 >
348 >    // Now, set some defaults in the mask:
349 >
350 >    Globals* simParams = info_->getSimParams();
351 >    std::string statFileFormatString = simParams->getStatFileFormat();
352 >    parseStatFileFormat(statFileFormatString);
353 >
354 >    // if we're doing a thermodynamic integration, we'll want the raw
355 >    // potential as well as the full potential:
356 >    
357 >    if (simParams->getUseThermodynamicIntegration())
358 >      statsMask_.set(RAW_POTENTIAL);
359 >    
360 >    // if we've got restraints turned on, we'll also want a report of the
361 >    // total harmonic restraints
362 >    if (simParams->getUseRestraints()){
363 >      statsMask_.set(RESTRAINT_POTENTIAL);
364 >    }
365 >    
366 >    if (simParams->havePrintPressureTensor() &&
367 >        simParams->getPrintPressureTensor()){
368 >      statsMask_.set(PRESSURE_TENSOR);
369 >    }
370 >
371 >    // Why do we have both of these?
372 >    if (simParams->getAccumulateBoxDipole()) {
373 >      statsMask_.set(SYSTEM_DIPOLE);
374 >    }
375 >    if (info_->getCalcBoxDipole()){
376 >      statsMask_.set(SYSTEM_DIPOLE);
377 >    }
378 >
379 >    if (simParams->havePrintHeatFlux()) {
380 >      if (simParams->getPrintHeatFlux()){
381 >        statsMask_.set(HEATFLUX);
382 >      }
383 >    }    
384 >    
385 >    
386 >    if (simParams->haveTaggedAtomPair() && simParams->havePrintTaggedPairDistance()) {
387 >      if (simParams->getPrintTaggedPairDistance()) {
388 >        statsMask_.set(TAGGED_PAIR_DISTANCE);
389 >      }
390 >    }
391 >    
392    }
393  
394 +  void Stats::parseStatFileFormat(const std::string& format) {
395 +    StringTokenizer tokenizer(format, " ,;|\t\n\r");
396 +
397 +    while(tokenizer.hasMoreTokens()) {
398 +      std::string token(tokenizer.nextToken());
399 +      toUpper(token);
400 +      StatsMapType::iterator i = statsMap_.find(token);
401 +      if (i != statsMap_.end()) {
402 +        statsMask_.set(i->second);
403 +      } else {
404 +        sprintf( painCave.errMsg,
405 +                 "Stats::parseStatFileFormat: %s is not a recognized\n"
406 +                 "\tstatFileFormat keyword.\n", token.c_str() );
407 +        painCave.isFatal = 0;
408 +        painCave.severity = OPENMD_ERROR;
409 +        simError();            
410 +      }
411 +    }  
412 +  }
413 +
414 +  Stats::~Stats() {
415 +    data_.clear();
416 +    statsMap_.clear();
417 +  }
418 +
419 +  std::string Stats::getTitle(int index) {
420 +    assert(index >=0 && index < ENDINDEX);
421 +    return data_[index].title;
422 +  }
423 +
424 +  std::string Stats::getUnits(int index) {
425 +    assert(index >=0 && index < ENDINDEX);
426 +    return data_[index].units;
427 +  }
428 +
429 +  std::string Stats::getDataType(int index) {
430 +    assert(index >=0 && index < ENDINDEX);
431 +    return data_[index].dataType;
432 +  }
433 +
434 +  void Stats::collectStats(){
435 +    Snapshot* snap = info_->getSnapshotManager()->getCurrentSnapshot();
436 +    Thermo thermo(info_);
437 +  
438 +    for (unsigned int i = 0; i < statsMask_.size(); ++i) {
439 +      if (statsMask_[i]) {
440 +        switch (i) {
441 +        case TIME:
442 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTime());
443 +          break;
444 +        case KINETIC_ENERGY:
445 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getKinetic());
446 +          break;
447 +        case POTENTIAL_ENERGY:
448 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPotential());
449 +          break;
450 +        case TOTAL_ENERGY:
451 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTotalEnergy());
452 +          break;
453 +        case TEMPERATURE:
454 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTemperature());
455 +          break;
456 +        case PRESSURE:
457 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getPressure());
458 +          break;
459 +        case VOLUME:
460 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getVolume());
461 +          break;
462 +        case CONSERVED_QUANTITY:
463 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getConservedQuantity());
464 +          break;
465 +        case PRESSURE_TENSOR:
466 +          dynamic_cast<MatrixAccumulator *>(data_[i].accumulator)->add(thermo.getPressureTensor());
467 +          break;
468 +        case SYSTEM_DIPOLE:
469 +          dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getSystemDipole());
470 +          break;
471 +        case HEATFLUX:
472 +          dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getHeatFlux());
473 +          break;
474 +        case HULLVOLUME:
475 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHullVolume());
476 +          break;
477 +        case GYRVOLUME:
478 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getGyrationalVolume());
479 +          break;
480 +        case TRANSLATIONAL_KINETIC:
481 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTranslationalKinetic());
482 +          break;
483 +        case ROTATIONAL_KINETIC:
484 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getRotationalKinetic());
485 +          break;
486 +        case LONG_RANGE_POTENTIAL:
487 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotential());
488 +          break;
489 +        case VANDERWAALS_POTENTIAL:
490 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[VANDERWAALS_FAMILY]);
491 +          break;
492 +        case ELECTROSTATIC_POTENTIAL:
493 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[ELECTROSTATIC_FAMILY]);
494 +          break;
495 +        case METALLIC_POTENTIAL:
496 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[METALLIC_FAMILY]);
497 +          break;
498 +        case HYDROGENBONDING_POTENTIAL:
499 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getLongRangePotentials()[HYDROGENBONDING_FAMILY]);
500 +          break;
501 +        case RECIPROCAL_POTENTIAL:
502 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getReciprocalPotential());
503 +          break;
504 +        case SHORT_RANGE_POTENTIAL:
505 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getShortRangePotential());
506 +          break;
507 +        case BOND_POTENTIAL:
508 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBondPotential());
509 +          break;
510 +        case BEND_POTENTIAL:
511 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getBendPotential());
512 +          break;
513 +        case DIHEDRAL_POTENTIAL:
514 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getTorsionPotential());
515 +          break;
516 +        case INVERSION_POTENTIAL:
517 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getInversionPotential());
518 +          break;
519 +        case RAW_POTENTIAL:
520 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRawPotential());
521 +          break;
522 +        case RESTRAINT_POTENTIAL:
523 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(snap->getRestraintPotential());
524 +          break;
525 +        case TAGGED_PAIR_DISTANCE:
526 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getTaggedAtomPairDistance());
527 +          break;
528 +        case ELECTRONIC_TEMPERATURE:
529 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getElectronicTemperature());
530 +          break;
531 +        case COM:
532 +          dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getCom());
533 +          break;
534 +        case COM_VELOCITY:
535 +          dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getComVel());
536 +          break;
537 +        case ANGULAR_MOMENTUM:
538 +          dynamic_cast<VectorAccumulator *>(data_[i].accumulator)->add(thermo.getAngularMomentum());
539 +          break;
540 +          /*
541 +        case SHADOWH:
542 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getShadowHamiltionian());
543 +          break;
544 +        case HELFANDMOMENT:
545 +          dynamic_cast<Accumulator *>(data_[i].accumulator)->add(thermo.getHelfandMoment());
546 +          break;
547 +          */
548 +        }
549 +      }
550 +    }
551 +  }
552 +
553 +  int Stats::getIntData(int index) {
554 +    assert(index >=0 && index < ENDINDEX);
555 +    RealType value;
556 +    dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value);
557 +    return (int) value;
558 +  }
559 +  RealType Stats::getRealData(int index) {
560 +    assert(index >=0 && index < ENDINDEX);
561 +    RealType value(0.0);
562 +    dynamic_cast<Accumulator *>(data_[index].accumulator)->getLastValue(value);
563 +    return value;
564 +  }
565 +  Vector3d Stats::getVectorData(int index) {
566 +    assert(index >=0 && index < ENDINDEX);
567 +    Vector3d value;
568 +    dynamic_cast<VectorAccumulator*>(data_[index].accumulator)->getLastValue(value);
569 +    return value;
570 +  }
571 +  Mat3x3d Stats::getMatrixData(int index) {
572 +    assert(index >=0 && index < ENDINDEX);
573 +    Mat3x3d value;
574 +    dynamic_cast<MatrixAccumulator*>(data_[index].accumulator)->getLastValue(value);
575 +    return value;
576 +  }
577 +
578 +  Stats::StatsBitSet Stats::getStatsMask() {
579 +    return statsMask_;
580 +  }
581 +  Stats::StatsMapType Stats::getStatsMap() {
582 +    return statsMap_;
583 +  }
584 +  void Stats::setStatsMask(Stats::StatsBitSet mask) {
585 +    statsMask_ = mask;
586 +  }
587 +
588   }

Comparing trunk/src/brains/Stats.cpp (property svn:keywords):
Revision 998 by chrisfen, Mon Jul 3 13:18:43 2006 UTC vs.
Revision 1925 by gezelter, Wed Aug 7 15:24:16 2013 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines