ViewVC Help
View File | Revision Log | Show Annotations | View Changeset | Root Listing
root/OpenMD/trunk/src/brains/Snapshot.hpp
(Generate patch)

Comparing trunk/src/brains/Snapshot.hpp (file contents):
Revision 316 by tim, Fri Feb 11 22:41:02 2005 UTC vs.
Revision 1966 by gezelter, Fri Jan 24 14:17:42 2014 UTC

# Line 1 | Line 1
1 < /*
1 > /*
2   * Copyright (c) 2005 The University of Notre Dame. All Rights Reserved.
3   *
4   * The University of Notre Dame grants you ("Licensee") a
# Line 6 | Line 6
6   * redistribute this software in source and binary code form, provided
7   * that the following conditions are met:
8   *
9 < * 1. Acknowledgement of the program authors must be made in any
10 < *    publication of scientific results based in part on use of the
11 < *    program.  An acceptable form of acknowledgement is citation of
12 < *    the article in which the program was described (Matthew
13 < *    A. Meineke, Charles F. Vardeman II, Teng Lin, Christopher
14 < *    J. Fennell and J. Daniel Gezelter, "OOPSE: An Object-Oriented
15 < *    Parallel Simulation Engine for Molecular Dynamics,"
16 < *    J. Comput. Chem. 26, pp. 252-271 (2005))
17 < *
18 < * 2. Redistributions of source code must retain the above copyright
9 > * 1. Redistributions of source code must retain the above copyright
10   *    notice, this list of conditions and the following disclaimer.
11   *
12 < * 3. Redistributions in binary form must reproduce the above copyright
12 > * 2. Redistributions in binary form must reproduce the above copyright
13   *    notice, this list of conditions and the following disclaimer in the
14   *    documentation and/or other materials provided with the
15   *    distribution.
# Line 37 | Line 28
28   * arising out of the use of or inability to use software, even if the
29   * University of Notre Dame has been advised of the possibility of
30   * such damages.
31 + *
32 + * SUPPORT OPEN SCIENCE!  If you use OpenMD or its source code in your
33 + * research, please cite the appropriate papers when you publish your
34 + * work.  Good starting points are:
35 + *                                                                      
36 + * [1]  Meineke, et al., J. Comp. Chem. 26, 252-271 (2005).            
37 + * [2]  Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006).          
38 + * [3]  Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008).          
39 + * [4]  Kuang & Gezelter,  J. Chem. Phys. 133, 164101 (2010).
40 + * [5]  Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011).
41   */
42    
42 /**
43  * @file Snapshot.hpp
44  * @author tlin
45  * @date 10/20/2004
46  * @time 23:56am
47  * @version 1.0
48  */
49  
43   #ifndef BRAINS_SNAPSHOT_HPP
44   #define BRAINS_SNAPSHOT_HPP
45  
46   #include <vector>
47  
48   #include "brains/DataStorage.hpp"
49 + #include "nonbonded/NonBondedInteraction.hpp"
50   #include "brains/Stats.hpp"
57 #include "UseTheForce/DarkSide/simulation_interface.h"
51  
52 < namespace oopse{
52 > using namespace std;
53 > namespace OpenMD{
54  
55 <    /**
56 <     * @class Snapshot Snapshot.hpp "brains/Snapshot.hpp"
57 <     * @brief Snapshot class is a repository class for storing dynamic data during
58 <     *  Simulation
59 <     * Every snapshot class will contain one DataStorage  for atoms and one DataStorage
60 <     *  for rigid bodies.
61 <     */
62 <    class Snapshot {
63 <        public:
64 <            
65 <            Snapshot(int nAtoms, int nRigidbodies) : atomData(nAtoms), rigidbodyData(nRigidbodies),
66 <                currentTime_(0), orthoRhombic_(0), chi_(0.0), integralOfChiDt_(0.0), eta_(0.0) {
55 >  /**
56 >   * FrameData is a structure for holding system-wide dynamic data
57 >   * about the simulation.
58 >   */
59 >  
60 >  struct FrameData {
61 >    int id;                       /**< identification number of the snapshot */
62 >    RealType currentTime;         /**< current time */
63 >    Mat3x3d  hmat;                /**< axes of the periodic box in matrix form */
64 >    Mat3x3d  invHmat;             /**< the inverse of the Hmat matrix */
65 >    Mat3x3d  bBox;                /**< axes of a bounding box in matrix form */
66 >    Mat3x3d  invBbox;             /**< the inverse of the bounding box */
67 >    bool     orthoRhombic;        /**< is this an orthorhombic periodic box? */
68 >    RealType totalEnergy;         /**< total energy of this frame */
69 >    RealType translationalKinetic; /**< translational kinetic energy of this frame */
70 >    RealType rotationalKinetic;   /**< rotational kinetic energy of this frame */
71 >    RealType kineticEnergy;       /**< kinetic energy of this frame */
72 >    RealType potentialEnergy;     /**< potential energy of this frame */
73 >    RealType shortRangePotential; /**< short-range contributions to the potential*/
74 >    RealType longRangePotential;  /**< long-range contributions to the potential */
75 >    RealType reciprocalPotential; /**< reciprocal-space contributions to the potential */
76 >    RealType bondPotential;       /**< bonded contribution to the potential */
77 >    RealType bendPotential;       /**< angle-bending contribution to the potential */
78 >    RealType torsionPotential;    /**< dihedral (torsion angle) contribution to the potential */
79 >    RealType inversionPotential;  /**< inversion (planarity) contribution to the potential */
80 >    potVec   lrPotentials;        /**< breakdown of long-range potentials by family */
81 >    potVec   excludedPotentials;  /**< breakdown of excluded potentials by family */
82 >    RealType restraintPotential;  /**< potential energy of restraints */
83 >    RealType rawPotential;        /**< unrestrained potential energy (when restraints are applied) */
84 >    RealType xyArea;              /**< XY area of this frame */
85 >    RealType volume;              /**< total volume of this frame */
86 >    RealType pressure;            /**< pressure of this frame */
87 >    RealType temperature;         /**< temperature of this frame */
88 >    pair<RealType, RealType> thermostat;    /**< thermostat variables */
89 >    RealType electronicTemperature; /**< temperature of the electronic degrees of freedom */
90 >    pair<RealType, RealType> electronicThermostat; /**< thermostat variables for electronic degrees of freedom */
91 >    Mat3x3d  barostat;            /**< barostat matrix */
92 >    Vector3d COM;                 /**< location of system center of mass */
93 >    Vector3d COMvel;              /**< system center of mass velocity */
94 >    Vector3d COMw;                /**< system center of mass angular velocity */
95 >    Mat3x3d  inertiaTensor;       /**< inertia tensor for entire system */
96 >    RealType gyrationalVolume;    /**< gyrational volume for entire system */
97 >    RealType hullVolume;          /**< hull volume for entire system */
98 >    Mat3x3d  stressTensor;        /**< stress tensor */
99 >    Mat3x3d  pressureTensor;      /**< pressure tensor */
100 >    Vector3d systemDipole;        /**< total system dipole moment */
101 >    Vector3d conductiveHeatFlux;  /**< heat flux vector (conductive only) */
102 >    Vector3d convectiveHeatFlux;  /**< heat flux vector (convective only) */
103 >    RealType conservedQuantity;   /**< anything conserved by the integrator */
104 >  };
105  
74            }
106  
107 <            Snapshot(int nAtoms, int nRigidbodies, int storageLayout)
108 <                : atomData(nAtoms, storageLayout), rigidbodyData(nRigidbodies, storageLayout),
109 <                currentTime_(0), orthoRhombic_(0), chi_(0.0), integralOfChiDt_(0.0), eta_(0.0) {
107 >  /**
108 >   * @class Snapshot
109 >   * @brief The Snapshot class is a repository storing dynamic data during a
110 >   * Simulation.  Every Snapshot contains FrameData (for global information)
111 >   * as well as DataStorage (one for Atoms, one for RigidBodies, and one for
112 >   * CutoffGroups).
113 >   */
114 >  class Snapshot {
115  
116 <            }
117 <            
118 <            /** Returns the id of this Snapshot */
119 <            int getID() {
120 <                return id_;
121 <            }
116 >  public:            
117 >    Snapshot(int nAtoms, int nRigidbodies, int nCutoffGroups);
118 >    Snapshot(int nAtoms, int nRigidbodies, int nCutoffGroups, int storageLayout);    
119 >    /** Returns the id of this Snapshot */
120 >    int      getID();
121 >    /** Sets the id of this Snapshot */
122 >    void     setID(int id);
123  
124 <            /** Sets the id of this Snapshot */
125 <            void setID(int id) {
89 <                id_ = id;
90 <            }
124 >    /** sets the state of the computed properties to false */
125 >    void     clearDerivedProperties();
126  
127 <            int getSize() {
128 <                return atomData.getSize() + rigidbodyData.getSize();
129 <            }
127 >    int      getSize();
128 >    /** Returns the number of atoms */
129 >    int      getNumberOfAtoms();
130 >    /** Returns the number of rigid bodies */
131 >    int      getNumberOfRigidBodies();
132 >    /** Returns the number of rigid bodies */
133 >    int      getNumberOfCutoffGroups();
134 >    /** Returns the number of bytes in a FrameData structure */
135 >    static int getFrameDataSize();
136  
137 <            /** Returns the number of atoms */
138 <            int getNumberOfAtoms() {
139 <                return atomData.getSize();
140 <            }
137 >    /** Returns the H-Matrix */
138 >    Mat3x3d  getHmat();
139 >    /** Sets the H-Matrix */
140 >    void     setHmat(const Mat3x3d& m);
141 >    /** Returns the inverse H-Matrix */
142 >    Mat3x3d  getInvHmat();
143  
144 <            /** Returns the number of rigid bodies */
145 <            int getNumberOfRigidBodies() {
146 <                return rigidbodyData.getSize();
147 <            }
144 >    /** Returns the Bounding Box */
145 >    Mat3x3d  getBoundingBox();
146 >    /** Sets the Bounding Box */
147 >    void     setBoundingBox(const Mat3x3d& m);
148 >    /** Returns the inverse Bounding Box*/
149 >    Mat3x3d  getInvBoundingBox();
150 >            
151 >    RealType getVolume();
152 >    RealType getXYarea();
153 >    void     setVolume(const RealType vol);
154  
155 <            /** Returns the H-Matrix */
156 <            Mat3x3d getHmat() {
108 <                return hmat_;
109 <            }
155 >    /** Wrapping the vector according to periodic boundary condition*/
156 >    void     wrapVector(Vector3d& v);
157  
158 <            /** Sets the H-Matrix */
159 <            void setHmat(const Mat3x3d& m);
158 >    /** Scaling a vector to multiples of the periodic box */
159 >    Vector3d scaleVector(Vector3d &v);
160 >
161 >    void     setCOM(const Vector3d &com);
162 >    void     setCOMvel(const Vector3d &comVel);
163 >    void     setCOMw(const Vector3d &comw);
164 >
165 >    Vector3d getCOM();
166 >    Vector3d getCOMvel();
167 >    Vector3d getCOMw();
168              
169 <            double getVolume() {
170 <                return hmat_.determinant();
171 <            }
169 >    RealType getTime();
170 >    void     increaseTime(const RealType dt);
171 >    void     setTime(const RealType time);
172  
173 <            /** Returns the inverse H-Matrix */
174 <            Mat3x3d getInvHmat() {
175 <                return invHmat_;
176 <            }
173 >    void     setBondPotential(const RealType bp);
174 >    void     setBendPotential(const RealType bp);
175 >    void     setTorsionPotential(const RealType tp);
176 >    void     setInversionPotential(const RealType ip);
177 >    RealType getBondPotential();
178 >    RealType getBendPotential();
179 >    RealType getTorsionPotential();
180 >    RealType getInversionPotential();
181  
182 <            /** Wrapping the vector according to periodic boundary condition*/
124 <            void wrapVector(Vector3d& v);
182 >    RealType getShortRangePotential();
183  
184 <            
185 <            double getTime() {
186 <                return currentTime_;
129 <            }
184 >    void     setLongRangePotential(const potVec lrPot);
185 >    RealType getLongRangePotential();
186 >    potVec   getLongRangePotentials();
187  
188 <            void increaseTime(double dt) {
189 <                setTime(getTime() + dt);
190 <            }
188 >    void     setReciprocalPotential(const RealType rp);
189 >    RealType getReciprocalPotential();
190 >    
191 >    void     setExcludedPotentials(const potVec exPot);
192 >    potVec   getExcludedPotentials();
193 >  
194 >    void     setRestraintPotential(const RealType rp);
195 >    RealType getRestraintPotential();
196  
197 <            void setTime(double time) {
198 <                currentTime_ =time;
137 <                //time at statData is redundant
138 <                statData[Stats::TIME] = currentTime_;
139 <            }
197 >    void     setRawPotential(const RealType rp);
198 >    RealType getRawPotential();
199  
200 <            double getChi() {
201 <                return chi_;
202 <            }
200 >    RealType getPotentialEnergy();
201 >    RealType getKineticEnergy();
202 >    RealType getTranslationalKineticEnergy();
203 >    RealType getRotationalKineticEnergy();
204 >    void     setKineticEnergy(const RealType ke);
205 >    void     setTranslationalKineticEnergy(const RealType tke);
206 >    void     setRotationalKineticEnergy(const RealType rke);
207 >    RealType getTotalEnergy();
208 >    void     setTotalEnergy(const RealType te);
209 >    RealType getConservedQuantity();
210 >    void     setConservedQuantity(const RealType cq);
211 >    RealType getTemperature();
212 >    void     setTemperature(const RealType temp);
213 >    RealType getElectronicTemperature();
214 >    void     setElectronicTemperature(const RealType eTemp);
215 >    RealType getPressure();
216 >    void     setPressure(const RealType pressure);
217  
218 <            void setChi(double chi) {
219 <                chi_ = chi;
147 <            }
218 >    Mat3x3d  getPressureTensor();
219 >    void     setPressureTensor(const Mat3x3d& pressureTensor);
220  
221 <            double getIntegralOfChiDt() {
222 <                return integralOfChiDt_;
151 <            }
221 >    Mat3x3d  getStressTensor();
222 >    void     setStressTensor(const Mat3x3d& stressTensor);
223  
224 <            void setIntegralOfChiDt(double integralOfChiDt) {
225 <                integralOfChiDt_ = integralOfChiDt;
155 <            }
156 <            
157 <            Mat3x3d getEta() {
158 <                return eta_;
159 <            }
224 >    Vector3d getConductiveHeatFlux();
225 >    void     setConductiveHeatFlux(const Vector3d& chf);
226  
227 <            void setEta(const Mat3x3d& eta) {
228 <                eta_ = eta;
163 <            }
164 <            
165 <            DataStorage atomData;
166 <            DataStorage rigidbodyData;
167 <            Stats statData;
168 <            
169 <        private:
170 <            double currentTime_;
227 >    Vector3d getConvectiveHeatFlux();
228 >    void     setConvectiveHeatFlux(const Vector3d& chf);
229  
230 <            Mat3x3d hmat_;
231 <            Mat3x3d invHmat_;
232 <            int orthoRhombic_;
230 >    Vector3d getHeatFlux();
231 >    
232 >    Vector3d getSystemDipole();
233 >    void     setSystemDipole(const Vector3d& bd);
234  
235 <            double chi_;
236 <            double integralOfChiDt_;
237 <            Mat3x3d eta_;
235 >    pair<RealType, RealType> getThermostat();
236 >    void setThermostat(const pair<RealType, RealType>& thermostat);
237 >
238 >    pair<RealType, RealType> getElectronicThermostat();
239 >    void setElectronicThermostat(const pair<RealType, RealType>& eThermostat);
240              
241 <            int id_; /**< identification number of the snapshot */
242 <    };
241 >    Mat3x3d  getBarostat();
242 >    void     setBarostat(const Mat3x3d& barostat);
243  
244 <    typedef DataStorage (Snapshot::*DataStoragePointer);
244 >    Mat3x3d  getInertiaTensor();
245 >    void     setInertiaTensor(const Mat3x3d& inertiaTensor);
246 >
247 >    RealType getGyrationalVolume();
248 >    void     setGyrationalVolume(const RealType gv);
249 >
250 >    RealType getHullVolume();
251 >    void     setHullVolume(const RealType hv);
252 >    
253 >    void     setOrthoTolerance(RealType orthoTolerance);
254 >
255 >    DataStorage atomData;
256 >    DataStorage rigidbodyData;
257 >    DataStorage cgData;
258 >    FrameData   frameData;
259 >
260 >    bool hasTotalEnergy;        
261 >    bool hasTranslationalKineticEnergy;    
262 >    bool hasRotationalKineticEnergy;    
263 >    bool hasKineticEnergy;    
264 >    bool hasShortRangePotential;
265 >    bool hasLongRangePotential;
266 >    bool hasPotentialEnergy;    
267 >    bool hasXYarea;
268 >    bool hasVolume;        
269 >    bool hasPressure;      
270 >    bool hasTemperature;    
271 >    bool hasElectronicTemperature;
272 >    bool hasCOM;            
273 >    bool hasCOMvel;
274 >    bool hasCOMw;
275 >    bool hasPressureTensor;    
276 >    bool hasSystemDipole;    
277 >    bool hasConvectiveHeatFlux;
278 >    bool hasInertiaTensor;
279 >    bool hasGyrationalVolume;
280 >    bool hasHullVolume;
281 >    bool hasConservedQuantity;
282 >    bool hasBoundingBox;
283 >
284 >  private:
285 >    RealType orthoTolerance_;
286 >    
287 >  };
288 >
289 >  typedef DataStorage (Snapshot::*DataStoragePointer);
290   }
291   #endif //BRAINS_SNAPSHOT_HPP

Comparing trunk/src/brains/Snapshot.hpp (property svn:keywords):
Revision 316 by tim, Fri Feb 11 22:41:02 2005 UTC vs.
Revision 1966 by gezelter, Fri Jan 24 14:17:42 2014 UTC

# Line 0 | Line 1
1 + Author Id Revision Date

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines