1 |
/* |
2 |
* Copyright (c) 2005 The University of Notre Dame. All Rights Reserved. |
3 |
* |
4 |
* The University of Notre Dame grants you ("Licensee") a |
5 |
* non-exclusive, royalty free, license to use, modify and |
6 |
* redistribute this software in source and binary code form, provided |
7 |
* that the following conditions are met: |
8 |
* |
9 |
* 1. Redistributions of source code must retain the above copyright |
10 |
* notice, this list of conditions and the following disclaimer. |
11 |
* |
12 |
* 2. Redistributions in binary form must reproduce the above copyright |
13 |
* notice, this list of conditions and the following disclaimer in the |
14 |
* documentation and/or other materials provided with the |
15 |
* distribution. |
16 |
* |
17 |
* This software is provided "AS IS," without a warranty of any |
18 |
* kind. All express or implied conditions, representations and |
19 |
* warranties, including any implied warranty of merchantability, |
20 |
* fitness for a particular purpose or non-infringement, are hereby |
21 |
* excluded. The University of Notre Dame and its licensors shall not |
22 |
* be liable for any damages suffered by licensee as a result of |
23 |
* using, modifying or distributing the software or its |
24 |
* derivatives. In no event will the University of Notre Dame or its |
25 |
* licensors be liable for any lost revenue, profit or data, or for |
26 |
* direct, indirect, special, consequential, incidental or punitive |
27 |
* damages, however caused and regardless of the theory of liability, |
28 |
* arising out of the use of or inability to use software, even if the |
29 |
* University of Notre Dame has been advised of the possibility of |
30 |
* such damages. |
31 |
* |
32 |
* SUPPORT OPEN SCIENCE! If you use OpenMD or its source code in your |
33 |
* research, please cite the appropriate papers when you publish your |
34 |
* work. Good starting points are: |
35 |
* |
36 |
* [1] Meineke, et al., J. Comp. Chem. 26, 252-271 (2005). |
37 |
* [2] Fennell & Gezelter, J. Chem. Phys. 124, 234104 (2006). |
38 |
* [3] Sun, Lin & Gezelter, J. Chem. Phys. 128, 234107 (2008). |
39 |
* [4] Kuang & Gezelter, J. Chem. Phys. 133, 164101 (2010). |
40 |
* [5] Vardeman, Stocker & Gezelter, J. Chem. Theory Comput. 7, 834 (2011). |
41 |
*/ |
42 |
|
43 |
/** |
44 |
* @file Snapshot.cpp |
45 |
* @author tlin |
46 |
* @date 11/11/2004 |
47 |
* @version 1.0 |
48 |
*/ |
49 |
|
50 |
#include "brains/Snapshot.hpp" |
51 |
#include "utils/NumericConstant.hpp" |
52 |
#include "utils/simError.h" |
53 |
#include "utils/Utility.hpp" |
54 |
#include <cstdio> |
55 |
|
56 |
namespace OpenMD { |
57 |
|
58 |
Snapshot::Snapshot(int nAtoms, int nRigidbodies, int nCutoffGroups) : |
59 |
atomData(nAtoms), rigidbodyData(nRigidbodies), |
60 |
cgData(nCutoffGroups, DataStorage::dslPosition), |
61 |
orthoTolerance_(1e-6) { |
62 |
|
63 |
frameData.id = -1; |
64 |
frameData.currentTime = 0; |
65 |
frameData.hmat = Mat3x3d(0.0); |
66 |
frameData.invHmat = Mat3x3d(0.0); |
67 |
frameData.orthoRhombic = false; |
68 |
frameData.bondPotential = 0.0; |
69 |
frameData.bendPotential = 0.0; |
70 |
frameData.torsionPotential = 0.0; |
71 |
frameData.inversionPotential = 0.0; |
72 |
frameData.lrPotentials = potVec(0.0); |
73 |
frameData.excludedPotentials = potVec(0.0); |
74 |
frameData.restraintPotential = 0.0; |
75 |
frameData.rawPotential = 0.0; |
76 |
frameData.xyArea = 0.0; |
77 |
frameData.volume = 0.0; |
78 |
frameData.thermostat = make_pair(0.0, 0.0); |
79 |
frameData.electronicThermostat = make_pair(0.0, 0.0); |
80 |
frameData.barostat = Mat3x3d(0.0); |
81 |
frameData.stressTensor = Mat3x3d(0.0); |
82 |
frameData.conductiveHeatFlux = Vector3d(0.0, 0.0, 0.0); |
83 |
|
84 |
clearDerivedProperties(); |
85 |
} |
86 |
|
87 |
Snapshot::Snapshot(int nAtoms, int nRigidbodies, int nCutoffGroups, |
88 |
int storageLayout) : |
89 |
atomData(nAtoms, storageLayout), |
90 |
rigidbodyData(nRigidbodies, storageLayout), |
91 |
cgData(nCutoffGroups, DataStorage::dslPosition), |
92 |
orthoTolerance_(1e-6) { |
93 |
|
94 |
frameData.id = -1; |
95 |
frameData.currentTime = 0; |
96 |
frameData.hmat = Mat3x3d(0.0); |
97 |
frameData.invHmat = Mat3x3d(0.0); |
98 |
frameData.bBox = Mat3x3d(0.0); |
99 |
frameData.invBbox = Mat3x3d(0.0); |
100 |
frameData.orthoRhombic = false; |
101 |
frameData.bondPotential = 0.0; |
102 |
frameData.bendPotential = 0.0; |
103 |
frameData.torsionPotential = 0.0; |
104 |
frameData.inversionPotential = 0.0; |
105 |
frameData.lrPotentials = potVec(0.0); |
106 |
frameData.excludedPotentials = potVec(0.0); |
107 |
frameData.restraintPotential = 0.0; |
108 |
frameData.rawPotential = 0.0; |
109 |
frameData.xyArea = 0.0; |
110 |
frameData.volume = 0.0; |
111 |
frameData.thermostat = make_pair(0.0, 0.0); |
112 |
frameData.electronicThermostat = make_pair(0.0, 0.0); |
113 |
frameData.barostat = Mat3x3d(0.0); |
114 |
frameData.stressTensor = Mat3x3d(0.0); |
115 |
frameData.conductiveHeatFlux = Vector3d(0.0, 0.0, 0.0); |
116 |
|
117 |
clearDerivedProperties(); |
118 |
} |
119 |
|
120 |
void Snapshot::clearDerivedProperties() { |
121 |
frameData.totalEnergy = 0.0; |
122 |
frameData.translationalKinetic = 0.0; |
123 |
frameData.rotationalKinetic = 0.0; |
124 |
frameData.kineticEnergy = 0.0; |
125 |
frameData.potentialEnergy = 0.0; |
126 |
frameData.shortRangePotential = 0.0; |
127 |
frameData.longRangePotential = 0.0; |
128 |
frameData.pressure = 0.0; |
129 |
frameData.temperature = 0.0; |
130 |
frameData.pressureTensor = Mat3x3d(0.0); |
131 |
frameData.systemDipole = Vector3d(0.0); |
132 |
frameData.convectiveHeatFlux = Vector3d(0.0, 0.0, 0.0); |
133 |
frameData.electronicTemperature = 0.0; |
134 |
frameData.COM = V3Zero; |
135 |
frameData.COMvel = V3Zero; |
136 |
frameData.COMw = V3Zero; |
137 |
|
138 |
hasTotalEnergy = false; |
139 |
hasTranslationalKineticEnergy = false; |
140 |
hasRotationalKineticEnergy = false; |
141 |
hasKineticEnergy = false; |
142 |
hasShortRangePotential = false; |
143 |
hasLongRangePotential = false; |
144 |
hasPotentialEnergy = false; |
145 |
hasXYarea = false; |
146 |
hasVolume = false; |
147 |
hasPressure = false; |
148 |
hasTemperature = false; |
149 |
hasElectronicTemperature = false; |
150 |
hasCOM = false; |
151 |
hasCOMvel = false; |
152 |
hasCOMw = false; |
153 |
hasPressureTensor = false; |
154 |
hasSystemDipole = false; |
155 |
hasConvectiveHeatFlux = false; |
156 |
hasInertiaTensor = false; |
157 |
hasGyrationalVolume = false; |
158 |
hasHullVolume = false; |
159 |
hasConservedQuantity = false; |
160 |
hasBoundingBox = false; |
161 |
} |
162 |
|
163 |
/** Returns the id of this Snapshot */ |
164 |
int Snapshot::getID() { |
165 |
return frameData.id; |
166 |
} |
167 |
|
168 |
/** Sets the id of this Snapshot */ |
169 |
void Snapshot::setID(int id) { |
170 |
frameData.id = id; |
171 |
} |
172 |
|
173 |
int Snapshot::getSize() { |
174 |
return atomData.getSize() + rigidbodyData.getSize(); |
175 |
} |
176 |
|
177 |
/** Returns the number of atoms */ |
178 |
int Snapshot::getNumberOfAtoms() { |
179 |
return atomData.getSize(); |
180 |
} |
181 |
|
182 |
/** Returns the number of rigid bodies */ |
183 |
int Snapshot::getNumberOfRigidBodies() { |
184 |
return rigidbodyData.getSize(); |
185 |
} |
186 |
|
187 |
/** Returns the number of rigid bodies */ |
188 |
int Snapshot::getNumberOfCutoffGroups() { |
189 |
return cgData.getSize(); |
190 |
} |
191 |
|
192 |
/** Returns the H-Matrix */ |
193 |
Mat3x3d Snapshot::getHmat() { |
194 |
return frameData.hmat; |
195 |
} |
196 |
|
197 |
/** Sets the H-Matrix */ |
198 |
void Snapshot::setHmat(const Mat3x3d& m) { |
199 |
hasVolume = false; |
200 |
frameData.hmat = m; |
201 |
frameData.invHmat = frameData.hmat.inverse(); |
202 |
|
203 |
//determine whether the box is orthoTolerance or not |
204 |
bool oldOrthoRhombic = frameData.orthoRhombic; |
205 |
|
206 |
RealType smallDiag = fabs(frameData.hmat(0, 0)); |
207 |
if(smallDiag > fabs(frameData.hmat(1, 1))) smallDiag = fabs(frameData.hmat(1, 1)); |
208 |
if(smallDiag > fabs(frameData.hmat(2, 2))) smallDiag = fabs(frameData.hmat(2, 2)); |
209 |
RealType tol = smallDiag * orthoTolerance_; |
210 |
|
211 |
frameData.orthoRhombic = true; |
212 |
|
213 |
for (int i = 0; i < 3; i++ ) { |
214 |
for (int j = 0 ; j < 3; j++) { |
215 |
if (i != j) { |
216 |
if (frameData.orthoRhombic) { |
217 |
if ( fabs(frameData.hmat(i, j)) >= tol) |
218 |
frameData.orthoRhombic = false; |
219 |
} |
220 |
} |
221 |
} |
222 |
} |
223 |
|
224 |
if( oldOrthoRhombic != frameData.orthoRhombic){ |
225 |
|
226 |
// It is finally time to suppress these warnings once and for |
227 |
// all. They were annoying and not very informative. |
228 |
|
229 |
// if( frameData.orthoRhombic ) { |
230 |
// sprintf( painCave.errMsg, |
231 |
// "OpenMD is switching from the default Non-Orthorhombic\n" |
232 |
// "\tto the faster Orthorhombic periodic boundary computations.\n" |
233 |
// "\tThis is usually a good thing, but if you want the\n" |
234 |
// "\tNon-Orthorhombic computations, make the orthoBoxTolerance\n" |
235 |
// "\tvariable ( currently set to %G ) smaller.\n", |
236 |
// orthoTolerance_); |
237 |
// painCave.severity = OPENMD_INFO; |
238 |
// simError(); |
239 |
// } |
240 |
// else { |
241 |
// sprintf( painCave.errMsg, |
242 |
// "OpenMD is switching from the faster Orthorhombic to the more\n" |
243 |
// "\tflexible Non-Orthorhombic periodic boundary computations.\n" |
244 |
// "\tThis is usually because the box has deformed under\n" |
245 |
// "\tNPTf integration. If you want to live on the edge with\n" |
246 |
// "\tthe Orthorhombic computations, make the orthoBoxTolerance\n" |
247 |
// "\tvariable ( currently set to %G ) larger.\n", |
248 |
// orthoTolerance_); |
249 |
// painCave.severity = OPENMD_WARNING; |
250 |
// simError(); |
251 |
// } |
252 |
} |
253 |
} |
254 |
|
255 |
/** Returns the inverse H-Matrix */ |
256 |
Mat3x3d Snapshot::getInvHmat() { |
257 |
return frameData.invHmat; |
258 |
} |
259 |
|
260 |
/** Returns the Bounding Box */ |
261 |
Mat3x3d Snapshot::getBoundingBox() { |
262 |
return frameData.bBox; |
263 |
} |
264 |
|
265 |
/** Sets the Bounding Box */ |
266 |
void Snapshot::setBoundingBox(const Mat3x3d& m) { |
267 |
frameData.bBox = m; |
268 |
frameData.invBbox = frameData.bBox.inverse(); |
269 |
hasBoundingBox = true; |
270 |
} |
271 |
|
272 |
/** Returns the inverse Bounding Box */ |
273 |
Mat3x3d Snapshot::getInvBoundingBox() { |
274 |
return frameData.invBbox; |
275 |
} |
276 |
|
277 |
RealType Snapshot::getXYarea() { |
278 |
if (!hasXYarea) { |
279 |
Vector3d x = frameData.hmat.getColumn(0); |
280 |
Vector3d y = frameData.hmat.getColumn(1); |
281 |
frameData.xyArea = cross(x,y).length(); |
282 |
hasXYarea = true; |
283 |
} |
284 |
return frameData.xyArea; |
285 |
} |
286 |
|
287 |
RealType Snapshot::getVolume() { |
288 |
if (!hasVolume) { |
289 |
frameData.volume = frameData.hmat.determinant(); |
290 |
hasVolume = true; |
291 |
} |
292 |
return frameData.volume; |
293 |
} |
294 |
|
295 |
void Snapshot::setVolume(RealType vol) { |
296 |
hasVolume = true; |
297 |
frameData.volume = vol; |
298 |
} |
299 |
|
300 |
|
301 |
/** Wrap a vector according to periodic boundary conditions */ |
302 |
void Snapshot::wrapVector(Vector3d& pos) { |
303 |
|
304 |
if( !frameData.orthoRhombic ) { |
305 |
Vector3d scaled = frameData.invHmat * pos; |
306 |
for (int i = 0; i < 3; i++) { |
307 |
scaled[i] -= roundMe( scaled[i] ); |
308 |
} |
309 |
// calc the wrapped real coordinates from the wrapped scaled coordinates |
310 |
pos = frameData.hmat * scaled; |
311 |
} else { |
312 |
RealType scaled; |
313 |
for (int i=0; i<3; i++) { |
314 |
scaled = pos[i] * frameData.invHmat(i,i); |
315 |
scaled -= roundMe( scaled ); |
316 |
pos[i] = scaled * frameData.hmat(i,i); |
317 |
} |
318 |
} |
319 |
} |
320 |
|
321 |
/** Scaling a vector to multiples of the periodic box */ |
322 |
inline Vector3d Snapshot::scaleVector(Vector3d& pos) { |
323 |
|
324 |
Vector3d scaled; |
325 |
|
326 |
if( !frameData.orthoRhombic ) |
327 |
scaled = frameData.invHmat * pos; |
328 |
else { |
329 |
// calc the scaled coordinates. |
330 |
for (int i=0; i<3; i++) |
331 |
scaled[i] = pos[i] * frameData.invHmat(i, i); |
332 |
} |
333 |
|
334 |
return scaled; |
335 |
} |
336 |
|
337 |
void Snapshot::setCOM(const Vector3d& com) { |
338 |
frameData.COM = com; |
339 |
hasCOM = true; |
340 |
} |
341 |
|
342 |
void Snapshot::setCOMvel(const Vector3d& comVel) { |
343 |
frameData.COMvel = comVel; |
344 |
hasCOMvel = true; |
345 |
} |
346 |
|
347 |
void Snapshot::setCOMw(const Vector3d& comw) { |
348 |
frameData.COMw = comw; |
349 |
hasCOMw = true; |
350 |
} |
351 |
|
352 |
Vector3d Snapshot::getCOM() { |
353 |
return frameData.COM; |
354 |
} |
355 |
|
356 |
Vector3d Snapshot::getCOMvel() { |
357 |
return frameData.COMvel; |
358 |
} |
359 |
|
360 |
Vector3d Snapshot::getCOMw() { |
361 |
return frameData.COMw; |
362 |
} |
363 |
|
364 |
RealType Snapshot::getTime() { |
365 |
return frameData.currentTime; |
366 |
} |
367 |
|
368 |
void Snapshot::increaseTime(RealType dt) { |
369 |
setTime(getTime() + dt); |
370 |
} |
371 |
|
372 |
void Snapshot::setTime(RealType time) { |
373 |
frameData.currentTime = time; |
374 |
} |
375 |
|
376 |
void Snapshot::setBondPotential(RealType bp) { |
377 |
frameData.bondPotential = bp; |
378 |
} |
379 |
|
380 |
void Snapshot::setBendPotential(RealType bp) { |
381 |
frameData.bendPotential = bp; |
382 |
} |
383 |
|
384 |
void Snapshot::setTorsionPotential(RealType tp) { |
385 |
frameData.torsionPotential = tp; |
386 |
} |
387 |
|
388 |
void Snapshot::setInversionPotential(RealType ip) { |
389 |
frameData.inversionPotential = ip; |
390 |
} |
391 |
|
392 |
|
393 |
RealType Snapshot::getBondPotential() { |
394 |
return frameData.bondPotential; |
395 |
} |
396 |
RealType Snapshot::getBendPotential() { |
397 |
return frameData.bendPotential; |
398 |
} |
399 |
RealType Snapshot::getTorsionPotential() { |
400 |
return frameData.torsionPotential; |
401 |
} |
402 |
RealType Snapshot::getInversionPotential() { |
403 |
return frameData.inversionPotential; |
404 |
} |
405 |
|
406 |
RealType Snapshot::getShortRangePotential() { |
407 |
if (!hasShortRangePotential) { |
408 |
frameData.shortRangePotential = frameData.bondPotential; |
409 |
frameData.shortRangePotential += frameData.bendPotential; |
410 |
frameData.shortRangePotential += frameData.torsionPotential; |
411 |
frameData.shortRangePotential += frameData.inversionPotential; |
412 |
hasShortRangePotential = true; |
413 |
} |
414 |
return frameData.shortRangePotential; |
415 |
} |
416 |
|
417 |
void Snapshot::setLongRangePotential(potVec lrPot) { |
418 |
frameData.lrPotentials = lrPot; |
419 |
} |
420 |
|
421 |
RealType Snapshot::getLongRangePotential() { |
422 |
if (!hasLongRangePotential) { |
423 |
for (int i = 0; i < N_INTERACTION_FAMILIES; i++) { |
424 |
frameData.longRangePotential += frameData.lrPotentials[i]; |
425 |
} |
426 |
hasLongRangePotential = true; |
427 |
} |
428 |
return frameData.longRangePotential; |
429 |
} |
430 |
|
431 |
potVec Snapshot::getLongRangePotentials() { |
432 |
return frameData.lrPotentials; |
433 |
} |
434 |
|
435 |
RealType Snapshot::getPotentialEnergy() { |
436 |
if (!hasPotentialEnergy) { |
437 |
frameData.potentialEnergy = this->getLongRangePotential(); |
438 |
frameData.potentialEnergy += this->getShortRangePotential(); |
439 |
hasPotentialEnergy = true; |
440 |
} |
441 |
return frameData.potentialEnergy; |
442 |
} |
443 |
|
444 |
void Snapshot::setExcludedPotentials(potVec exPot) { |
445 |
frameData.excludedPotentials = exPot; |
446 |
} |
447 |
|
448 |
potVec Snapshot::getExcludedPotentials() { |
449 |
return frameData.excludedPotentials; |
450 |
} |
451 |
|
452 |
void Snapshot::setRestraintPotential(RealType rp) { |
453 |
frameData.restraintPotential = rp; |
454 |
} |
455 |
|
456 |
RealType Snapshot::getRestraintPotential() { |
457 |
return frameData.restraintPotential; |
458 |
} |
459 |
|
460 |
void Snapshot::setRawPotential(RealType rp) { |
461 |
frameData.rawPotential = rp; |
462 |
} |
463 |
|
464 |
RealType Snapshot::getRawPotential() { |
465 |
return frameData.rawPotential; |
466 |
} |
467 |
|
468 |
RealType Snapshot::getTranslationalKineticEnergy() { |
469 |
return frameData.translationalKinetic; |
470 |
} |
471 |
|
472 |
RealType Snapshot::getRotationalKineticEnergy() { |
473 |
return frameData.rotationalKinetic; |
474 |
} |
475 |
|
476 |
RealType Snapshot::getKineticEnergy() { |
477 |
return frameData.kineticEnergy; |
478 |
} |
479 |
|
480 |
void Snapshot::setTranslationalKineticEnergy(RealType tke) { |
481 |
hasTranslationalKineticEnergy = true; |
482 |
frameData.translationalKinetic = tke; |
483 |
} |
484 |
|
485 |
void Snapshot::setRotationalKineticEnergy(RealType rke) { |
486 |
hasRotationalKineticEnergy = true; |
487 |
frameData.rotationalKinetic = rke; |
488 |
} |
489 |
|
490 |
void Snapshot::setKineticEnergy(RealType ke) { |
491 |
hasKineticEnergy = true; |
492 |
frameData.kineticEnergy = ke; |
493 |
} |
494 |
|
495 |
RealType Snapshot::getTotalEnergy() { |
496 |
return frameData.totalEnergy; |
497 |
} |
498 |
|
499 |
void Snapshot::setTotalEnergy(RealType te) { |
500 |
hasTotalEnergy = true; |
501 |
frameData.totalEnergy = te; |
502 |
} |
503 |
|
504 |
RealType Snapshot::getConservedQuantity() { |
505 |
return frameData.conservedQuantity; |
506 |
} |
507 |
|
508 |
void Snapshot::setConservedQuantity(RealType cq) { |
509 |
hasConservedQuantity = true; |
510 |
frameData.conservedQuantity = cq; |
511 |
} |
512 |
|
513 |
RealType Snapshot::getTemperature() { |
514 |
return frameData.temperature; |
515 |
} |
516 |
|
517 |
void Snapshot::setTemperature(RealType temp) { |
518 |
hasTemperature = true; |
519 |
frameData.temperature = temp; |
520 |
} |
521 |
|
522 |
RealType Snapshot::getElectronicTemperature() { |
523 |
return frameData.electronicTemperature; |
524 |
} |
525 |
|
526 |
void Snapshot::setElectronicTemperature(RealType eTemp) { |
527 |
hasElectronicTemperature = true; |
528 |
frameData.electronicTemperature = eTemp; |
529 |
} |
530 |
|
531 |
RealType Snapshot::getPressure() { |
532 |
return frameData.pressure; |
533 |
} |
534 |
|
535 |
void Snapshot::setPressure(RealType pressure) { |
536 |
hasPressure = true; |
537 |
frameData.pressure = pressure; |
538 |
} |
539 |
|
540 |
Mat3x3d Snapshot::getPressureTensor() { |
541 |
return frameData.pressureTensor; |
542 |
} |
543 |
|
544 |
|
545 |
void Snapshot::setPressureTensor(const Mat3x3d& pressureTensor) { |
546 |
hasPressureTensor = true; |
547 |
frameData.pressureTensor = pressureTensor; |
548 |
} |
549 |
|
550 |
void Snapshot::setStressTensor(const Mat3x3d& stressTensor) { |
551 |
frameData.stressTensor = stressTensor; |
552 |
} |
553 |
|
554 |
Mat3x3d Snapshot::getStressTensor() { |
555 |
return frameData.stressTensor; |
556 |
} |
557 |
|
558 |
void Snapshot::setConductiveHeatFlux(const Vector3d& chf) { |
559 |
frameData.conductiveHeatFlux = chf; |
560 |
} |
561 |
|
562 |
Vector3d Snapshot::getConductiveHeatFlux() { |
563 |
return frameData.conductiveHeatFlux; |
564 |
} |
565 |
|
566 |
Vector3d Snapshot::getConvectiveHeatFlux() { |
567 |
return frameData.convectiveHeatFlux; |
568 |
} |
569 |
|
570 |
void Snapshot::setConvectiveHeatFlux(const Vector3d& chf) { |
571 |
hasConvectiveHeatFlux = true; |
572 |
frameData.convectiveHeatFlux = chf; |
573 |
} |
574 |
|
575 |
Vector3d Snapshot::getHeatFlux() { |
576 |
// BE CAREFUL WITH UNITS |
577 |
return getConductiveHeatFlux() + getConvectiveHeatFlux(); |
578 |
} |
579 |
|
580 |
Vector3d Snapshot::getSystemDipole() { |
581 |
return frameData.systemDipole; |
582 |
} |
583 |
|
584 |
void Snapshot::setSystemDipole(const Vector3d& bd) { |
585 |
hasSystemDipole = true; |
586 |
frameData.systemDipole = bd; |
587 |
} |
588 |
|
589 |
void Snapshot::setThermostat(const pair<RealType, RealType>& thermostat) { |
590 |
frameData.thermostat = thermostat; |
591 |
} |
592 |
|
593 |
pair<RealType, RealType> Snapshot::getThermostat() { |
594 |
return frameData.thermostat; |
595 |
} |
596 |
|
597 |
void Snapshot::setElectronicThermostat(const pair<RealType, RealType>& eTherm) { |
598 |
frameData.electronicThermostat = eTherm; |
599 |
} |
600 |
|
601 |
pair<RealType, RealType> Snapshot::getElectronicThermostat() { |
602 |
return frameData.electronicThermostat; |
603 |
} |
604 |
|
605 |
void Snapshot::setBarostat(const Mat3x3d& barostat) { |
606 |
frameData.barostat = barostat; |
607 |
} |
608 |
|
609 |
Mat3x3d Snapshot::getBarostat() { |
610 |
return frameData.barostat; |
611 |
} |
612 |
|
613 |
void Snapshot::setInertiaTensor(const Mat3x3d& inertiaTensor) { |
614 |
frameData.inertiaTensor = inertiaTensor; |
615 |
hasInertiaTensor = true; |
616 |
} |
617 |
|
618 |
Mat3x3d Snapshot::getInertiaTensor() { |
619 |
return frameData.inertiaTensor; |
620 |
} |
621 |
|
622 |
void Snapshot::setGyrationalVolume(const RealType gyrationalVolume) { |
623 |
frameData.gyrationalVolume = gyrationalVolume; |
624 |
hasGyrationalVolume = true; |
625 |
} |
626 |
|
627 |
RealType Snapshot::getGyrationalVolume() { |
628 |
return frameData.gyrationalVolume; |
629 |
} |
630 |
|
631 |
void Snapshot::setHullVolume(const RealType hullVolume) { |
632 |
frameData.hullVolume = hullVolume; |
633 |
hasHullVolume = true; |
634 |
} |
635 |
|
636 |
RealType Snapshot::getHullVolume() { |
637 |
return frameData.hullVolume; |
638 |
} |
639 |
|
640 |
void Snapshot::setOrthoTolerance(RealType ot) { |
641 |
orthoTolerance_ = ot; |
642 |
} |
643 |
} |